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1. INTRODUCTION: MOTIVE AND BACKGROUND

Nonadiabatic transitions are one of the most important quantum
mechanical phenomena in chemical reaction dynamics. This is
because the most interesting chemical and even biological phenom-
ena involve nonadiabatic transition events.Many theoretical methods
for treating such nonadiabatic transitions have been proposed, and
without a doubt their contribution to the progress of elementary
dynamical processes of chemical reactions has been enormous. Yet,
due to the rapid progress of experimental studies, we are often faced
with complicated and difficult experimental situations that have not
been studied before. For instance, due to advances in laser technology,
an intense electromagnetic vector potential has become available,
which nowmakes it possible tomodify themolecular electronic states
and thereby induce novel nonadiabatic coupling. This article reviews
the recent theories of nonadiabatic transitions from a fundamental
perspective. Particular attention will be paid to the recent notion of
nonadiabaticity in electron dynamics. We will also discuss the
interaction of molecular nonadiabatic states with intense laser fields.
This review can also be read as a general review of mixed quantum-
classical dynamics, in which quantum and classical subsystems
kinematically contact each other, leaving the effects of quantum
mechanical entanglement to survive in the classical subsystem.

The theory of nonadiabatic transitions was first proposed in 1932
by Landau,1 Zener,2 Stueckelberg,3 and London,4 to study phenom-
ena including electron transfer between two atoms. Since then,
nonadiabatic dynamics has been found in many other phenomena,
mostly in chemical reactions. Among these, the dynamics across
conical intersections is one of the most important subjects in current
chemistry. These classic theories, however, suffer from severe limita-
tions and/or drawbacks from their theoretical structures. For instance,
the Landau�Zener formula assumes linearly crossed diabatic (one-
dimensional) energy curves with a constant nonadiabatic transition
coupling, thereby allowing a transition only at the crossing point.
However, these assumptions are far from the reality in many systems.
Another basic theory of nonadiabatic transitions is the semiclassical
Ehrenfest theory (SET). Although it can cope withmultidimensional
nonadiabatic electronic-state mixing, it inevitably produces a nuclear
path that runs on an averaged potential energy surface even after
having passed across the nonadiabatic region, which is totally
unphysical. Unfortunately, since SET seems intuitively correct, a
naive and conventional derivation of this theory obscures how this
critical difficulty arises. To overcome these difficulties, many theories
have been proposed in the literature. For example, the
Zhu�Nakamura theory5 is regarded as an ultimate theory within
the Landau�Zener type dynamics. The fewest switch surface hop-
ping method6 and the theory of natural decay of mixing7�10 are
among the most advanced methodologies so far proposed to
practically resolve the critical difficulty of SET.

Yet, in spite of the availability of such advanced methodologies
in modern molecular science, there are many situations that are
not even considered by such state-of-the-art theories. For instance,
experimentalists are often interested in systems of densely
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degenerated electronic states, which are rather universal in very
high excited states. Furthermore, recent advances in laser tech-
nology enable drastic modification in the molecular electronic
states, which in turn can induce novel nonadiabatic coupling in
addition to the native nonadiabatic transition. Such nonadiabatic
chemistry in intense laser fields makes the current situation in
science totally different from that of traditional theories of
nonadiabatic transition.11 It seems therefore obvious that we
should reconsider the theory of nonadiabatic transitions from a
deeper point of view rather than try to technically augment the
classic theories that rest on sometimes naive assumptions. The
present review has been written with a hope that the theory of
nonadiabatic transition can be rebuilt from a more fundamental
perspective.

There have been published many excellent review articles on
the theory of nonadiabatic transitions, among which refs 12�17
are particularly recommended. Therefore, we should begin this
article by discussing more explicitly why we should write another
review. In doing this, we briefly overview on which basis the
current theoretical chemistry stands and attempt to project to
which direction we are proceeding.

1.1. Traditional Framework of Quantum Chemistry
Immediately after Heisenberg and Schr€odinger established

quantummechanics, in 1927, Born and Oppenheimer developed
a perturbation theory to help us comprehend how amolecule can
exist in a stable state.18 The notion of separation of the nuclear
and electronic motions essentially emerged from this study along
with the so-called Born�Oppenheimer fixed nuclear approxima-
tion (more simply referred to as the Born�Oppenheimer (BO)
approximation). The BO approximation is so successful, actually
even more successful than originally anticipated, it is quite often
regarded as a robust paradigm of molecular science. Incidentally,
in the same year, Heitler and London19 proposed the quantum
theory of valence, which was followed by Pauling with his
powerful concepts of valence bond, resonance, electonegativity,
and so on. In the theory of rate process in chemical reactions,
Eyring20 and Evans and Polanyi21 established the transition-state
theory in 1935, and the early theories of nonadiabatic transition
of Landau,1 Zener,2 and Stueckelberg3 date back to the year
1932. It is rather astonishing, therefore, that the theoretical
foundations of present chemistry were established in such early
days of quantum physics.

In order to discuss as accurately as possible these complex
theories, we will now briefly review the traditional and canonical
way of describing a molecular system. Within the nonrelativistic
scheme, the quantum-mechanical molecular Hamiltonian is
generally written as

Hðr,RÞ ¼ TN þ Helðr;RÞ
¼ 1

2 ∑k
P̂2k
Mk

þ Helðr;RÞ ð1Þ

where a many-body electronic Hamiltonian is defined as

Helðr;RÞ ¼ Te þ Vcðr;RÞ
¼ 1

2m ∑j
p̂2j þ Vcðr;RÞ ð2Þ

Here and in what follows, r and R denote the electronic and
nuclear coordinates, respectively, and p̂j and P̂k are the operators
of their conjugate momenta of the jth and kth components of

r (denoted as rj) and R (Rk), respectively. Vc(r;R) represents
collectively the Coulombic interactions among electrons and
nuclei. Because nuclei move far more slowly than electrons due to
their heavy masses, it is standard practice to expand the total
wave function Ψ(r,R,t) in stationary electronic basis functions
{ΦI(r;R)}, which are determined at each nuclear position R, in
such a way that

Ψðr,R, tÞ ¼ ∑
I
χIðR, tÞ ΦIðr;RÞ ð3Þ

This is often referred to as the Born�Huang expansion.22 We
assume that the electronic basis set {|ΦIæ}, either adiabatic or
diabatic, is orthonormal at each nuclear configuration as

ÆΦIðRÞjΦJðRÞæ ¼ δIJ ð4Þ
In what follows, the bra-ket inner product represents integration
over the electronic coordinates only.

Inserting this form of the total wave function into the time-
dependent Schr€odinger equation and using the above orthonor-
mal property, one obtains the standard coupled equations of
motion for nuclear wave functions

ip
∂

∂t
χI ¼

1
2 ∑k

P̂2k
Mk

χI � ip ∑
k
∑
J

Xk
IJ P̂k
Mk

χJ �
p2

2 ∑k ∑
J

Y k
IJ

Mk
χJ

þ ∑
J
Hel

IJχJ ð5Þ

where

Xk
IJ ¼ ΦI

�����∂ΦJ

∂Rk

+
, Yk

IJ ¼ ΦI

�����∂
2ΦJ

∂Rk
2

* +*
ð6Þ

and

Hel
IJðRÞ ¼ ÆΦIjHeljΦJæ ð7Þ

These quantities are the main players in the theory of
nonadiabaticity. In addition to these, Hel can contain spin�orbit
couplings. We do not, however, discuss the relativistic effects any
further, since it is beyond the scope of this review. Interested
readers are referred to ref 23. This multistate coupled Schr€odinger
equation can be transformed into a compact matrix form as
shown below

ip
∂

∂t
χI ¼ ∑

J
∑
k

1
2Mk

½ðIP̂k � ipXkÞ2�IJ þ Hel
IJ

" #
χJ ð8Þ

where [I]IJ = δIJ and [X
k]IJ =XIJ

k .14,16 The above reduction to eq 5
is mathematically complete, but these close coupling equations
practically require much labor in solving even for small systems.23�32

It is generally accepted that one of the most successful fields in
theoretical chemistry is so-called quantum chemistry. This is an
electronic structure theory based on the fixed nuclei (Born�
Oppenheimer) approximation, which is the eigenvalue problem
with respect to the electronic Hamiltonian Hel(r;R) at each
nuclear configuration, that is

Helðr;RÞ ΦIðr;RÞ ¼ VIðRÞ ΦIðr;RÞ ð9Þ
Quantum chemistry serves as quite a reliable tool for the
interpretation and prediction of complex chemical phenomena
and can aid in designing novel molecules prior to experimental
synthesis. The result is a great contribution to chemistry and
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thereby human society. Techniques have been developed there
that are highly sophisticated and are aimed at the study of
larger molecular systems with faster and more accurate com-
putation so as to make it possible to treat the more realistic
molecules found in nature. The fixed nuclear approximation is
extremely useful, not only for the bound states but also for
the treatment of electronic scattering by molecules. For in-
stance, stationary-state scattering theories within the fixed
nuclear approximation have been extensively developed for
molecular photoionization33,34 and electron scattering from
polyatomic molecules.35,36 These scattering phenomena are
quite important in several respects, since they are widely found
in nature as elementary processes and even in industrial
applications using plasma processes. These scatterings may
be referred to as stationary-state electron dynamics in the fixed
nuclei approximation.

Despite the undoubted success of quantum chemistry, it is
important to recognize its theoretical limitations, since it is
beyond such borders that the novel electronic states we do not
yet know of may exist. These limitations may be summarized as
follows. (1) Quantum electronic structure theory (alias quantum
chemistry) does not contain time t. It assumes that molecules are
basically long-lived. However, this is not necessarily the case in
highly excited states or in the transient states encountered during
the course of chemical reactions. Furthermore we should think
about the energy-time uncertainty that imposes an unavoidable
limitation on the accurate observation of the state energy.
Moreover the energy distribution even in electronic wavepacket
states cannot be neglected in an ultrashort time experiment. (2)
The individual (adiabatic) electronic states are well-defined, only
if their energies are sufficiently separated from each other. But in
highly degenerate states, the notion of the individual adiabatic
potential energy surfaces loses its sense. Rather, one should take
explicit account of the kinematic coupling with nuclear motions,
or nonadiabaticity.

On the other hand, nuclear dynamics on a given potential
energy surface (PES) VI(R) within the BO separation scheme is
reduced to solving the following equation

ip
∂

∂t
χIðR, tÞ ¼ ½TN þ VIðRÞ�χIðR, tÞ ð10Þ

The full quantum wavepacket dynamics, which is shown in eq 5,
is based on the Born�Huang expansions and, if it were perfectly
achieved, appears to be mathematically exact. However, since the
wavelength of matter waves for heavy particles such as nuclei is
much shorter in general than that of an electron, it is never easy to
solve even eq 10 unless certain constraints are additionally
imposed. Classical alternatives are therefore frequently adopted
with the understanding that quantum effects are totally ne-
glected. It is commonly believed that semiclassical mechanics
compromises two conflicting factors: computability and the
taking into account of quantum effects. However, to the best of
our knowledge, semiclassical mechanics remains a tough chal-
lenge. (We will discuss this aspect briefly in section 4.1.) It should
also be noted that these studies on nuclear dynamics, including
the close coupling equations as shown in eq 5, are quite often
performedwithout any deep concern about the change of electronic
states. The electronic energies, together with the nonadiabatic
coupling elements, are supposedly given independently by quantum
chemistry. Indeed, this seems to be largely the case in the actual

performance of chemical dynamics. Consequently, these two
major fields have been separated from each other.

1.2. Entanglement of Nuclear and Electronic Motions as an
Essential Feature in the Breakdown of the Born�Oppenheimer
Approximation

There is no doubt that the Born�Oppenheimer approxima-
tion captures the essential feature of the molecular properties of
stable molecules. (So many papers have been published on the
mathematical and numerical analyses of the Born�Oppenheimer
theory, but it is beyond the scope of the current review. See refs
37�39 for relevant recent literature.) The validity or the level of
accuracy of the Born�Oppenheimer separation is roughly
assessed as follows. Let m be the mass of an electron and let
Ml be the mass of the lth nucleus. The perturbation parameter
k is taken as

k ¼
ffiffiffiffiffi
m
M

4

r
ð11Þ

where M is a kind of average of the Ml values such that

Ml ¼ M
1
μl

¼ m
k4μl

ð12Þ

with μl being a dimensionless number of order O(1). Born and
Oppenheimer18 studied the stationary Schr€odinger equation

Hðr,RÞ ψðr,RÞ ¼ Eψðr,RÞ ð13Þ
using a perturbation theory with the total Hamiltonian repre-
sented by

H ¼ H0 þ k4H1 ð14Þ
where the zeroth order Hamiltonian is the electronic Hamilto-
nian and the perturbation interaction k4H1 is the nuclear kinetic
energy operator

TN ¼ k4H1 ð15Þ
They expanded the total energy according to the order of the
perturbation interaction such that

W ¼ W0 þ kW ð1Þ þ k2W ð2Þ þ k3W ð3Þ þ k4W ð4Þ þ :::

ð16Þ
They showed that W0 is the electronic energy, k2W(2) corre-
sponds to the harmonic nuclear vibrational energy, and k4W(4)

gives the anharmonic vibrational energy with molecular rota-
tional energy. They also explicitly proved that

W ð1Þ ¼ W ð3Þ ¼ 0 ð17Þ
The energy terms up to k4W(4) constitute the so-called Born�
Oppenheimer energy of a molecule. The higher terms should
represent the various couplings between electronic, vibrational,
and rotational modes.

The critical question is how accurate (or inaccurate) the
Born�Oppenheimer energy of a molecule defined as above is.
Recently Takahashi and Takatsuka have addressed this question
and reported a semiclassical analysis of this matter.40 They
explicitly showed that the fifth order term W(5) is also exactly
zero, and therefore, the lowest-order correction to the Born�
Oppenheimer energy must be of the order of

ðm=MÞ6=4 ð18Þ
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This explicitly highlights that the Born�Oppenheimer approx-
imation is far better than what would be expected from a simple
mass ratio m/M. For example, if m/M∼10�6, the error term is
(m/M)1.5∼10�9.

In cases where the above perturbation theory is not valid,
mainly as a result of the degenerate situation among the static
electronic states, quantum mechanical mixing among them
through the nuclear kinetic operator becomes significant. Con-
sequently, a nonadiabatic transition takes place in the molecular
configuration at which the nonadiabatic coupling elements, XIJ

k in
eq 6, are large enough and/or the potential energy surfaces
“avoid-cross” each other. [See ref 24 for a latest review on the
faithful approaches to solve the coupled equations.] In such a
nonadiabatic situation, a nuclear wavepacket starting from an
electronic stateΦ1(r;R) is bifurcated into two by a single passage
across a nonadiabatic region, which is mathematically written as
follows:

χ1ðR, tbÞ Φ1ðr;RÞ f χ1ðR, taÞ Φ1ðr;RÞ
þ χ2ðR, taÞ Φ2ðr;RÞ þ ::: ð19Þ

Here, tb and ta, respectively, indicate a time before and after
passing through the nonadiabatic region. The right-hand side of
this equation represents a typical situation of quantum entangle-
ment, in which it is only after the relevant measurement that one
can realize which one of |χ1(R,ta)Φ1(r;R)|

2, |χ2(R,ta)Φ2(r;R)|
2,

and so on actually appears. This kind of quantum entanglement
generated by the wavepacket bifurcation is one of the key features
of nonadiabatic dynamics (see below for a more thorough
argument about entanglement in the BO approximation).

To be a little more precise about the notion of quantum
entanglement, it should be noted that even a single term in the
Born�Huang expansion such as χ(R,t) Φ(r;R) in eq 19 has
already, at least to some extent, taken into account quantum
entanglement through the functional form of the electronic wave
function. This is made clearer if we formally expand it into an
“independent” basis functions as

χðR, tÞ Φðr;RÞ ¼ ∑
a
�χaðR, tÞ �ΦaðrÞ ð20Þ

where the electronic function is free from the nuclear coordinates
and thereby does not track the nuclear motion. This is in contrast
to the spirit of Born�Oppenheimer. The basis set {Φ& a(r)} is
sometimes referred to as a completely diabatic basis, and in fact it
is physically poor and slowly converging. Moreover, it has been
shown14 that such a complete diabatic electronic basis does not
globally “exist” (see also the Appendix in this review). Never-
theless, {Φ& a(r)} is mathematically simple to handle. Hence,
some of these basis functions might prove useful depending on
how they are exploited. In fact, the simultaneous quantization of
electronic and nuclear degrees of freedom is a somewhat classic
problem in theoretical chemistry and consequently has a long
history. A more recent development has been the direct deter-
mination of self-consistent nuclear orbitals along with electronic
orbitals (molecular orbitals) in the functional form of eq 20.41�46

These methods are expected to work for estimating the vibronic
coupling energy, but only if a large amplitude displacement of
nuclear positions does not take place. We will not consider these
basis functions further in this review, not only because of the slow
convergence expected in the expansion of eq 20, but more
importantly because they obscure the essential characteristics
of nonadiabaticity.

1.3. Experimental Reality of the Wavepacket Bifurcation
It is important to emphasize that the wavepacket bifurcation as

represented in eq 19 is not simply a mathematical artifact but can
be observed directly as a real time dynamics using spectroscopic
techniques. [Quantum interference among these bifurcated wave-
packets in their remerging area leading to an oscillation in the
product distribution is known as the Stueckelberg oscillation.3,47

This is an indirect observation of the wavepacket bifurcation.]
Indeed, Arasaki et al. have shown explicitly that femtosecond
pump�probe photoelectron spectroscopy can actually detect
the instant of wavepacket bifurcation, in which the distribution
functions of energy and angle of photoelectrons themselves bi-
furcate or suddenly change in a characteristic manner.48 This is
because as soon as a nuclear wavepacket undergoes a transition
from one potential energy surface to another of different character,
the nature of the photoelectrons can change drastically. This has
been numerically shown to be the case in a study of the NaI
system, in which the potential energy curves of NaI and Na+I�

avoid-cross each other on the occasion of electron transfer.48 Very
recently, Suzuki et al. have developed a time-resolved photoelec-
tron imaging technique and actually showed that such bifurcation
dynamics can be experimentally observed.49

Similarly, Arasaki et al. explored the application of femtose-
cond time-resolved photoelectron spectroscopy for the real-time
monitoring of wavepacket dynamics through the conical inter-
section between the first two 2A0 states of NO2.

50 They employed
global potential energy surfaces for the ground and first excited
2A0 states and for the ground singlet and first triplet ion states, to
time-propagate the quantum vibrational wave function in full
(three) dimensions using a short time propagator. They calcu-
lated the ab initio geometry- and energy-dependent photoioniza-
tion amplitudes explicitly. These are incorporated to calculate the
angle- and energy-resolved photoelectron spectra, thus reprodu-
cing the velocity map images. They have successfully shown that
the bifurcation of a wavepacket across the conical intersection
can also be directly observed in real time. Incidentally, they also
proposed a modification of (shift the position of and change the
nature of) the conical intersection in NO2 by breaking the C2v

symmetry by shining a laser on it and thereby controlling the
nonadiabatic transition probability.51 In addition, they showed
that the effect of such control of chemical reactions can be directly
monitored in terms of pump�probe photoelectron spectroscopy
in real time.52 This is one of the exciting new aspects of the study
of nonadiabatic transitions.

1.4. Necessity of Nonadiabatic Dynamical Electron Theory
As noted above, the foundations of theoretical chemistry were

already established in the 1920s and 1930s, and even today the
basic framework remains essentially the same. However, there
are many reasons we need to lift the time-independent electronic
state theory into the realm of dynamical electron theory by taking
explicit account of time t in it. Below are listed some of the current
attempts to achieve this goal.
1.4.1. Progress in Laser Chemistry. 1.4.1.1. Tracking

Attosecond Electron Dynamics. The most powerful driving
force to demand for the advancement of the dynamical theory of
electronic states comes from the progress being made in laser
technology, of which there are two aspects. The first is in the
rapid advances of ultrashort pulse lasers, whose width is shorter
than 100 attoseconds. This is comparable with or shorter than
the time scale of the valence electrons in a molecule.53�63 For
many years, nothing could be experimentally generated that was
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faster than the time scale of electrons. But that has changed and
now the exploration of electron wavepacket dynamics in chemi-
cal reactions of polyatomic molecules becomes more and more
realistic using such ultrafast laser pulse technology. To date, most
of the full quantal numerical studies on electronic-nuclear entire
dynamics are made for the hydrogen molecule or its cation.
Those relevant works include refs 54 and 64�81.
However, to achieve further progress, more general ab initio

methods need to be developed for the treatment of multielec-
tronic and polyatomic molecules.
1.4.1.2. Modulating Electronic States and Control of Chemi-

cal Reactions. Intense lasers have brought about a revolutionary
change in modern molecular spectroscopy. In the past, in the
field of photochemistry, only a weak and/or almost resonant
perturbation was applied to a molecule to observe its response.
This meant that only the static states were characterized. On the
other hand, a laser field which is more intense than 1016 W/cm2

can apply as strong forces to nuclei and electrons, as their original
interactions do. The result therefore is that it can readily modulate
the electronic states directly by creating a new wavepacket state.
It can also induce nonadiabatic interactions in addition to the
original ones. For instance, an efficient way of inducing an electronic
excitation can be possible through the use of vibrational excita-
tion using IR lasers.82 One of the ultimate aims in this context
would be to create new electronic states, through which the
control of chemical reactions could be achieved.
1.4.1.3. Dynamics of Internal and External Electrons. Simi-

larly, intense lasers make it possible to study the early stages in
the multiphoton ionization of molecules through multiply ex-
cited states. Above-threshold ionization gives rise to a quasi-free
electronic wavepacket state, and the recombination (collision) of
such an electronic wavepacket with the remaining cation species
results in the high harmonic generation.83�89 These issues give
rise to an extremely interesting challenge on how to describe the
electronic wavepacket states.
1.4.1.4. Secondary Effects of an Induced Electromagnetic

Field by a Molecular Electron Current in External Laser Fields.
The electron current within a molecule driven by an intense laser
field should generate an induced electromagnetic field. This in
turn will bring about the nontrivial secondary effects.90�95 The
more intense the external field is, the more prominent these
secondary effects should be. However, they can be studied only
by solving the coupled equations of the quantum electronic
wavepacket and the Maxwell equations in a self-consistent
manner.96 To successfully achieve this project, a very good
theory for nonadiabatic electron wavepacket theory must be
constructed first.
1.4.2. Chemistry without Potential Energy Surfaces:

Highly Degenerate Electronic States Far Beyond the
Born�Oppenheimer Separation. The dynamics in densely
degenerate electronic states such as those commonly found in
highly excited states and metal-like states97 are expected to
undergo large fluctuations among the many electronic states
involved. In addition, the energy�time uncertainty relation
precludes dynamics that are confined to a single potential energy
surface, and hence, the notion of a separated potential energy
surface may lose any sense. This is what is called “chemistry
without potential energy surfaces”. Since it is a meaningless effort
to single out an individual global adiabatic potential energy
surface in such a situation, only the so-called “on-the-fly”method
should be able to track such complicated nonadiabatic dynamics.
(See section 3 for the definition of the on-the-fly method. A nice

example of application of the on-the-fly method in a study of laser
control of chemical reactions is seen in ref 98.)
1.4.3. Nonadiabatic Dynamical Electron Theory for

Chemical Reactions. It turns out through our studies that
the electron wavepacket description of chemical reactions offers
an interesting and novel way of comprehending them when the
shift of the nuclear configuration induces a qualitative change in
the electronic states through nonadiabatic interactions. This
situation is typically observed in chemical reactions which are
nonconcerted reactions or Woodward�Hoffmann symmetry
forbidden reactions, proton transfer dynamics associated with
keto�enol tautomerization,99 fast relaxation dynamics of excited
states through conical intersections, and so on. Electron flow
dynamics and their forces working on the nuclei will provide new
insights into chemical reactivity.100,101

In addition, the influence of truly multidimensional nonadia-
batic effects in the study of chemical reactions is quite important.
So far most of the nonadiabatic theories have been limited to
one-dimensional systems. They are applied to multidimensional
systems by locally slicing the potential energy surface in a direction
parallel to that of a classical trajectory under study. However,
essentially multidimensional effects of nonadiabatic dynamics
certainly exist. Conical intersection and the so-called geometric
phase (for instance, the Longuet�Higgins phase,102 the Berry
phase,103 as well as the phase in the molecular Aharonov�Bohm
effect,104,105 among others) are illuminating examples.Moreover,
it is anticipated that other essentially multidimensional effects
will be discovered in the future. In this review, in section 5.4, we
will present a case study of electron wavepacket dynamics around
a conical intersection, thereby showing some of its new features.
Also, attention is drawn to a theoretical parallelism between the
electromagnetic vector potential and the nonadiabatic interac-
tion (see section 3.7), which should give a clue to finding a
multidimensional effect of nonadiabatic interactions.
1.4.4. General Theory of Mixed Quantum and Classical

Dynamics. Let us suppose it is possible to treat the nuclear
subsystem in a molecule “classically” and the electronic subsys-
tem quantummechanically. This type of theoretical framework is
called a mixed quantum-classical representation. Such a mixed
representation can find many applications in science. For in-
stance, a fast mode such as the proton dynamics in a protein
should be considered as a quantum subsystem, while the rest of
the skeletal structure can be treated as a “classical” subsystem.106�108

It is quite important in this context to establish the correct
equations of motion for each of the subsystems and to ask what
are their rigorous solutions and how the quantum effects
penetrate into the classical subsystems. By studying the quan-
tum-electron and classical-nucleus nonadiabatic dynamics as
deeply as possible, we will attain such rigorous solutions. This
is one of the aims of the present review.
1.4.5. WhatDoWeMean by a “Fundamental Approach”

to Nonadiabaticity? The title of this review, a “Fundamental
Approaches to Nonadiabaticity” was suggested by the Guest
Editors of this thematic issue. Therefore, before concluding
this introductory section, we should summarize here what is
meant by “fundamental approach”. As stressed above, we
need to set our starting point much deeper than the Born�
Oppenheimer separation scheme to find the unknownmolecular
states, in order to cope with the advent of the latest advances in
experimental studies. To be a little more precise, an accurate
estimate of transition probability in one-dimensional nonadia-
batic processes is not good enough; hence, we want to survey
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(1) the notion of coherence and decoherence, (2) a description
of electron�nuclear entanglement as one of the most quantum
mechanical phenomena, (3) the identification of the quantum
phases arising from electron and nuclear dynamics, (4) the
establishment of practical equations of motion for the coupled
dynamics between electrons and nuclei, and (5) the physics of
interference between the nonadiabatic dynamics and external
fields. With these final goals in mind, we will now address the
issues involved.
The rest of this review is organized as follows. First, in section

2 we will briefly review the classic and recent studies of semi-
classical methods for the evaluation of nonadiabatic transition
amplitudes in coupled nuclear dynamics. These theories are
useful for a quick estimate of the nonadiabatic transition prob-
ability. However, the dynamics of electrons is not considered
explicitly at all. In section 3 we review nonadiabatic electron
theories and simultaneous nuclear path dynamics. We begin the
section with the Pechukas path integral theory, which is semi-
classically reduced, by integrating the electronic motion first, to
an equation of motion to determine a globally smooth “nuclear
path” running through the nonadiabatic region connecting two
end points located on two different PESs. This equation must be
solved in a self-consistent manner (typically with an iteration
method) if such a path indeed exists. Consequently, this brings to
our attention the difficulty of quantum entanglement as mani-
fested in nuclear path dynamics. We then turn to the electron-
state mixing problem along a nuclear path in terms of the naive
semiclassical Ehrenfest theory (SET). In contrast to the Pechu-
kas theory, a classical path passing across a nonadiabatic region is
given uniquely in SET. However, it is forced to run on an
averaged potential energy surface, thus destroying the Born�
Oppenheimer scheme after the passage. With respect to this, it is
necessary to pay special attention to the issue of coherence and
natural decoherence of electronic states to be realized along the
corresponding nuclear paths. An important theory by Truhlar
et al. will also be outlined. It uniquely (without iteration) gives a
globally smooth “classical path” connecting two end points on
two different PESs. This remarkable achievement, in marked
contrast to the Pechukas theory, has been made possible by their
introduced external (decoherence) field, which again highlights
the difficulty of representing correctly the entanglement in non-
Born�Oppenheimer paths. Finally, we will present the correct
solution to this mixed quantum and classical dynamics, namely
the branching paths generated in a nonadiabatic region along
which to materialize the electronic state mixing. It will be shown
that the entanglement is well represented up to the quantum
phases of electron-nuclei dynamics in terms of the branching
paths. Section 4 touches upon a representation of the total
nonadiabatic wave function beyond the stage of the Born�
Oppenheimer approximation. In section 5, we will present our
recent case studies of nonadiabatic electron dynamics on (i) the
migration dynamics of hydrated electrons, (ii) the laser response
of selected molecules, and (ii) a precise analysis of conical
intersection from the viewpoint of path branching. With these
examples, albeit being limited to small systems, we intend to
show how the electron dynamics can be exploited. One of the
difficult problems that merits further study is the quantum
chemical technique for the calculation of nonadiabatic matrix
elements. Although it seems a rather technical issue, some deep-
lying problems are hidden behind this matter. We cannot stress
too much that practical studies on nonadiabatic electron dy-
namics are made possible by the progress in quantum chemistry.

We consider this aspect in the Appendix. This review closes in
section 6 with some concluding remarks.

2. SEMICLASSICAL THEORIES OF NONADIABATIC
TRANSITION IN COUPLED NUCLEAR DYNAMICS

Although this review attempts to guide readers to the non-
adiabatic electron wavepacket theory (in both the presence and
absence of external laser fields), we should first review the basic
ideas of traditional theories, addressing both their advantages and
limitations in view of the aims mentioned in the Introduction.
Only selected semiclassical theories of nonadiabatic transitionswill
be discussed, in which two potential energy surfaces (PESs), along
with their nonadiabatic coupling elements, are assumed to be given
externally. Those readers who are familiar with the traditional
theory of nonadiabatic transitions may wish to skip to section 3, in
which we discuss the nonadiabatic electron wavepacket theory.

2.1. Landau�Zener Theory of the Curve Crossing Model
Landau1 and Zener2 studied nonadiabatic transitions in atom-

ic collisions and the dissociation of diatomic molecules. Although
Landau also reached an equivalent conclusion independently, we
will follow Zener’s approach here. Zener reduced the original
problem to a simplified two-state model, which is now called “the
linear curve crossing model”, in which a nonadiabatic dynamics is
approximated as follows: (1) The relevant nuclear motion near
the curve crossing point is one-dimensional, which is referred to
as the “reaction coordinate” in this context. The reaction
coordinate is denoted as X, which is the displacement from the
curve crossing point. (2) Diabatic potentials near the crossing
point,W1 andW2, are approximated as linear inX;W1 =�F1X and
W2 =�F2X for states 1 and 2, respectively. (It was also assumed
in the original formulation that F1 and F2 should be of the same
sign, but this condition is not imposed on the modern curve-
crossing theory.) (3) The off-diagonal term in the diabatic
representation is approximated as the constant V throughout
the region. (4) During the transition, the system is assumed to
move with a constant velocity v, that is, _X = v.

Assumption 3 appears rather unphysical. However, it can be
rationalized to some extent as follows. If the difference in the
diagonal component is much larger than the off-diagonal com-
ponent, that is, |W1(X) � W2(X)| . V, then the transition
probability would be suppressed andmoreover the spatial change
of V should not qualitatively affect the final result, on the con-
dition that |W1(X)�W2(X)| grows fast. Assumption 4 is valid in
cases where the incident energy is large enough compared to the
change in the potential energy surface. In such cases, in the
diabatic representation, the wave functions of the two electronic
states can be represented byΦ1(r;X) andΦ2(r;X), respectively.
The total wave function is then represented as

Ψðr,X , tÞ ¼ C1ðtÞΦ1ðr;XÞ þ C2ðtÞΦ2ðr;XÞ ð21Þ
Using the assumption X = vt, the Schr€odinger equation is thus
reduced to a matrix equation

ip
∂

∂t

C1ðtÞ
C2ðtÞ

 !
¼ W1ðXÞ V

V W2ðXÞ

 !
C1ðtÞ
C2ðtÞ

 !
ð22Þ

This equation is to be solved as an initial value problem under the
conditionsC1(�∞) = 0 and |C2(�∞)| = 1. Then the probability
of the system undergoing a nonadiabatic transition is given by
P = |C2(+∞)|2 per single crossing. The problem is reduced to a
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second order differential equation, whose solution is given by the
Weber functions. Zener obtained the transition probability in the
asymptotic region as

P ¼ exp � π

2pv
V 2

jF1 � F2j

" #
ð23Þ

which is now well-known as the Landau�Zener formula. The
dimensionless quantity appearing in the exponent, [π/2pv][V2/
|F1 � F2|], characterizes the strength of the nonadiabatic transi-
tion. Due to these somewhat crude approximations made in
constructing the above linear curve crossing model, the resultant
expression of the probability is often not accurate enough for
realistic systems. But it is remarkable that the theory represents
the essential nature of the nonadiabatic transition using such a
simple analytic formula with a minimum number of parameters:
nonperturbative exponential dependence on the off-diagonal
coupling term V and the inverse dependence on velocity v, which
is consistent with the adiabatic limit (P f 0 as v f 0). The
Landau�Zener formula works as a rough but qualitatively useful
estimate of nonadiabatic transition probabilities.109

The characteristic exponent in the Landau�Zener formula can
actually be obtained without the explicit assumption of constant
velocity or constant coupling. We consider the transition ampli-
tude, say c21, from the diabatic state 1 to the state 2 in the time
interval t1 to t2, during which the system passes through the curve
crossing point. Using the first order perturbation, it is evaluated as

c21 ¼ � i
p

Z t2

t1
dt exp � i

p

Z t2

t
dt0 W2ðt0Þ

� �
V

� exp � i
p

Z t

t1
dt00 W1ðt00Þ

� �
ð24Þ

Under semiclassical (smallp) assumptions, the integral is evaluated
using the stationary phase approximation. The stationary phase
condition becomes

W2ðtÞ �W1ðtÞ ¼ 0 ð25Þ
which is satisfied at the crossing time tc. The second order deri-
vative of the exponent at the crossing time gives v(tc)(F2(tc) �
F1(tc)). Thus, we have

c21≈� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πVðtcÞ2

pvðtcÞjF2ðtcÞ � F1ðtcÞj

s
exp � i

p

Z t2

tc
dt0 W2ðt0Þ

� �

� exp � i
p

Z tc

t1
dt00 W1ðt00Þ

� �
ð26Þ

where the quantity in the square root is equivalent to the
exponent in the Landau�Zener formula, apart from the constant
factor. Thus, up to this approximation, the characteristic dimen-
sionless strength of the nonadiabatic transition strength is V(tc)

2/
[pv(tc)|F2(tc) � F1(tc)|], even if v or V are slowly varying
functions of time. The above condition of the smooth connection
of quantum phases is essential in the curve crossing problem.
This was stressed in an application of phase-space quantum
mechanics to nonadiabatic dynamics, with which the so-called
Magnus approximation was obtained.110

It should be noted, however, that there are certain theoretical
limitations in applying the Landau�Zener formula. For example,

it does not work in cases where the two diabatic potential curves
have mutually the opposite slopes, though this is a common
situation in nonadiabatic processes related to chemical reactions.
For more refined discussions on the validity of the Landau�
Zener formula, readers are recommended to consult refs 12, 111,
and 112. There is also a problem concerning the accuracy of the
formula, in particular at a low collision energy. Since the Landau�
Zener formula is aimed at estimating the transition probability
within the “exponential accuracy”, the claim that it lacks quanti-
tative accuracy misses the point. Yet, ab initio calculations for
actual molecular systems with the avoided crossing revealed that
the Landau�Zener model is often far from the reality; in nature,
the electronic-state mixing is more subtle and complicated than
originally anticipated and is heavily dependent on the system
chosen. All of which suggests that quantum chemical studies are
inevitable for realistic research.

2.2. Quantum Phase Arising from Nonadiabatic Transitions
2.2.1. Phase in Nonadiabatic Interactions. We will now

consider the Stueckelberg theory. Compared to the Landau�
Zener theory, it is based on a more general assumption and gives
a quantum phase associated with nonadiabatic reaction pro-
cesses, which was missing in the Landau�Zener formula. The
phase effect is obviously important, since, as suggested by
Stueckelberg himself, it is experimentally observable. He reduced
the two-state Schr€odinger equation to a fourth order differential
equation for a single state. With a semiclassical method, he
derived an exponential factor that the wave function gains as it
turns around the complex crossing point of two adiabatic surfaces
in order to obtain the transition probability. The square of the
transition amplitude per single passage over the crossing point
becomes equivalent to the Landau�Zener formula under the
assumptions adopted in the linear curve crossing model. A
marked difference, however, comes from the use of the adiabatic
representation. The wavenumber kj of the heavy particle (nuclei)
with the total energy Etot explicitly reflects the electronic energy
Ej (the energy of PES) in the form (p2/2μ)kj

2 + Ej = Etot. This is
in contrast to the Landau�Zener theory, where the heavy
particle motion is assumed to be independent from or unaffected
by the internal (electronic) state. As a consequence, Stueckel-
berg’s formula selects (approximately) the phase factors from the
nonadiabatic process. A wave function branching in the non-
adiabatic region can proceed on two different adiabatic potential
curves and, depending on the energy, can meet again in the same
nonadiabatic region, where the phase interference takes place,
leading to an oscillation of the population of the products. This
effect is known as the Stueckelberg oscillation, and it is indeed
experimentally observed in ultrafast spectroscopies.47

Child12 developed a uniform diagrammatic approach for one-
dimensional problems; classical turning points, barrier penetra-
tion, and curve crossings are represented in terms of individual
diagrams. These are further connected with link matrices of the
semiclassical wave function coefficients. Child showed that a wide
range of spectroscopic phenomena such as predissociation and
restricted rotation are described as a combination of these elemen-
tary diagrams. Thewave function is written in a semiclassical form as

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ

2πp2kðrÞ
r

fC0 exp½i
Z r

r0
kðrÞ dr�

þ C00 exp½ � i
Z r

r0
kðrÞ dr�g ð27Þ
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where μ is the reduced mass and pk(r) � [2μ(E � V(r))]1/2,
with energyE and potentialV(r), and r0 is the curve-crossing point.
The linkmatrixM then connects the coefficient vectorC = (C0,C00)T

before and after the passage in the manner C(after) = MC(before).
Summarizing Stueckelberg’s results in a compact manner, the
curve crossing, in particular, takes the following form: The wave
functions before and after the curve crossing are written as

ψjðrÞ ∼ k�1=2
( fU 0

j exp½i
Z r

r0

k(ðrÞ dr�

þU
00
j exp½ � i

Z r

r0

k(ðrÞ dr�g for r , R0

ψjðrÞ ∼ k�1=2
- fV 0

j exp½i
Z r

r0

k-ðrÞ dr�

þ V
00
j exp½ � i

Z r

r0

k-ðrÞ dr�g for r . R0 ð28Þ

where the (diabatic) state indices j are either 1 or 2. ( (-) for
r, R0 (r.R0) takes + (�) for j = 1 and� (+) for j = 2. k( are
semiclassical wavenumbers on the adiabatic potential V( �
(W1 + W2)/2 ( {[(W1 � W2)/2]

2 + V2}1/2. Then the relation
between the coefficients is given as

V
0
1

V
0
2

 !
¼ λ �ð1� λ2Þ1=2e�iχ

ð1� λ2Þ1=2eiχ λ

0
@

1
A U

0
1

U
0
2

 !

ð29Þ
and

U
00
1

U
00
2

 !
¼ λ ð1� λ2Þ1=2eiχ

�ð1� λ2Þ1=2e�iχ λ

0
@

1
A V

00
1

V
00
2

 !

ð30Þ
where λ � e�πν is the transition amplitude with ν =
[1/(2π)]Im[

R
r1
r2dr [k�(r) � k+(r)]], with r1 and r2 being

crossing points that exist on the analytically continued functions
of the adiabatic potential surfaces, whereas the phase factor χ is
given as χ = arg Γ(iv) � v ln v + v + π/4. Thus, a unified
semiclassical theory has been established for a chemical reaction
in which plural elementary processes may be involved.
2.2.2. Curve Crossing in the Complex Plane. Miller and

George113 extended the Stueckelberg phase formalism to the
complex plane of the internuclear distance. They started from the
path integral expression of transition amplitude given by
Pechukas.114 For a given nuclear path R(t), and in the first order
perturbative correction to the adiabatic limit, the transition
amplitude along it is represented as

K 21½RðtÞ� ¼ �
Z t2

t1
dt0 ϕ2

����� ∂∂t0ϕ1
* +

� exp � i
p
f
Z t2

t0
E2ðRðt00ÞÞ dt00

�

þ
Z t0

t1
E1ðRðt00ÞÞ dt00g

�
ð31Þ

where time t0 is an instant of the transition and should be scanned
over the possible time range. Evaluating the integral with the
steepest descent method in the complex plane of R, they

obtained the expression

K 21½RðtÞ� ¼ exp � i
p
f
Z t2

t�
E2ðRðt0ÞÞ dt0 þ

Z t�

t1
E1ðRðt0ÞÞ dt0g

� �
ð32Þ

where t/ is the complex crossing time, at which the complex path
R(t) passes across a crossing seam. Since avoided crossing is
being considered here, in the adiabatic representation, such a
crossing seam is found only in the complex plane of R, and by
passing through the seam, a path can proceed from the original
potential curve (Riemann surface) to the other counterpart. In
running on the complex plane, the path acquires the complex
action (the exponent on the right-hand side of eq 32), the magnitude
of which depends on the location of the complex seam. Through
the imaginary part of the action, K 21[R(t)] can damp, thereby
representing the nonadiabatic transition amplitude. Although
this idea is quite interesting, its practical application may not be
easy, depending on the analyticity of the adiabatic potentials.
Besides, the general analyticity of complex continuation of the
adiabatic potential energy surfaces in multidimensional systems
is unknown yet.

2.3. Zhu�Nakamura Theory
Among the limitations of the Landau�Zener formula, the

most serious is the fact that it does not work for cases where the
incident energy is small in comparison to the off-diagonal coupling
V, although such low energy collisions were excluded in the
original derivation of the linear curve crossing model by Zener. It
was only 60 years after the original Landau and Zener’s works
that Zhu and Nakamura achieved the complete solution of the
linear curve crossing model and its generalization.5 The linear
curve crossing model is converted to a time-independent form
where the coupled Schr€odinger equations are

� p2

2m
d2

dx2
� F1x

 !
ψ1 � Vψ2 ¼ Eψ1

� p2

2m
d2

dx2
� F2x

 !
ψ2 � Vψ1 ¼ Eψ2,

ð33Þ

These are then solved in the momentum representation. The
solution is given in the form

ψjðxÞ ¼
Z

dk
2π

eikx
2
jfjjAjðkÞ exp i

fj
ðεk� k3=3Þ

" #
ð34Þ

where j is either 1 or 2, fj � 2mFj/p
2, and ε � 2mE/p2 is

the converted force and the energy, respectively (see ref 5 for
more detail). From the argument of the asymptotic behavior in the
x f ∞ (x f � ∞) for positive (negative) Fj solution,

111 the
transition amplitude is obtained from the asymptotic behavior of
Aj(k) in the region |k|f∞, whose mutual relationship is given
by the scattering matrix. The Zhu�Nakamura theory5 is based
on the analysis of the Stokes phenomena.5,115 Since the
Schr€odinger equation (eq 33) in the momentum representation
is reduced to the second order differential equation with quartic
polynomials as coefficients, the asymptotic solution is affected by
the Stokes phenomena from four transition points. In ref 5, they
first analyzed the distribution of the four transition points in the
whole range of two parameters, which represent the scale of the
off-diagonal coupling and kinetic energy (a2 and b2 in ref 5).
They next derived the reduced scattering matrix SR as a function
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of six Stokes constants, which is then reduced to only one of them
U1 by making use of the symmetry properties of SR. The Stokes
constant U1 is expressed formally as an infinite series of param-
eters, but for practical purposes, it is obtained using parameter-
dependent approximate methods.

The Zhu�Nakamura theory is composed of many formulas
which are dependent on the various physical situations under
study. One example of wide interest is a formula for the case of
F1F2 < 0, or what they call the nonadiabatic tunneling. Here we
consider a single passage transition, and from the wide range of
situations considered in the Zhu�Nakamura theory, we will
quote only the simplest case in which the incident energy is
higher than the adiabatic energy of the higher state at the crossing
point (b2 g 1). In such cases, the Stokes constant U1 has a clear
quasi-classical interpretation U1 = i(1 � P)1/2eiψ, where P is the
Landau�Zener formula-like single transition probability and is
given as (see eq 4.13 in ref 5)

P ¼ exp � π

4ab
2

1 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�4ð0:72� 0:62a1:43Þp

 !1=22
4

3
5

ð35Þ

Here a and b are again the scaled off-diagonal coupling and
kinetic energy in ref 5.

The Zhu�Nakamura theory also covers other cases such as
low-energy collision dynamics, where the incident energy is
much lower than the barrier of the lower adiabatic potential
(see ref 5 for the explicit form appropriate for this parameter
range). That is, it can handle correctly and conveniently a system
in which nonadiabatic dynamics couples with the relevant tunneling
phenomenon.

One great advantage of the Zhu�Nakamura theory is that its
transition amplitude can be represented in terms of the param-
eters related to the adiabatic potentials and incident energy alone.
Although the derivation started from the diabatic representation
of the system, transformation to the diabatic parameters from the
adiabatic counterparts is in fact not needed, once the effective
parameters as a and b in eq 35 are obtained. Thus, it is applicable
solely within the adiabatic representation.13

2.4. Surface Hopping Scheme
Tully and Preston116 proposed a drastically simplified com-

putational scheme to treat nonadiabatic transitions, in which a
multidimensional classical trajectory is allowed to suddenly hop
at a selected place(s) on an adiabatic potential energy surface
(PES) with a transition probability that has to be numerically
provided by other methods, such as the Zhu�Nakamura theory.
The first version of the surface hopping model is based on an
assumption that nonadiabatic transitions take place only in a
limited region of the potential energy surfaces, such as an avoided-
crossing seam (or the crossing seam of the corresponding diabatic
potential surfaces). On hopping, the velocity is readjusted with
discontinuous change so as to satisfy the energy conservation.
Concerning the idea on where and how to let a trajectory hop
between two adiabatic PESs, Shenvi proposed the so-called
“phase-space surface hopping”.117 Martínez et al. developed the
method of an optimized way of hopping.118 Statistical hopping is
achieved through the Monte Carlo algorithm, and basically the
phase information is destroyed in the hopping procedure. For
technical issues, consult ref 116.

Using this approach, the nonadiabatic transition probability is
estimated in terms of the number of classical trajectories reaching
the goal areas of the individual PESs in asymptotic regions. Yet,
another stochastic computation of the total transition probability
is possible by using both daughter (one hops to another PES)
and mother (the other remaining on the original PES) trajec-
tories. The individual transition amplitudes can be estimated
with, for instance, the Zhu�Nakamura formula. These pieces of
transition-probability information carried by the individual tra-
jectories can be summed up asymptotically. Besides, the transi-
tion-amplitude information containing the quantum phase, along
with the phases coming from the action integral with each path,
may be summed up asymptotically. An appropriate numerical
methodmakes it possible to partly take into account the quantum
interference among the paths in this way (see the comment in
ref 119).

Thanks to the inherent simplicity and tractability, even in multi-
dimensional systems, the surface hopping model and its modified
versions have been applied to a wide range of phenomena.120,121

Hence, they have made a large contribution to progress in
chemistry. Meanwhile, the validity of this earlier version of the
surface hopping method has also been tested intensively. In
particular, Parlant et al.122 tested the accuracy of the transition
probability by a direct comparison with the exact quantummechan-
ical counterpart.

On the other hand, it is obvious that such a simplified treatment
sacrifices some important features of nonadiabatic dynamics that
are crucial in modern experimental studies. One such feature is
the influence of interference effects arising from multiple transi-
tions. In real systems, nonadiabatic coupling elements are not
sharply localized on a single crossing seam, but rather can have a
distribution of wide spatial range. In the first version of the
surface hopping scheme, multiple transitions and their interfer-
ence effects are missing. To overcome such severe limitations of
the naive surface hopping scheme, many improved versions have
been proposed. These include an important one by Tully himself,6

which will be discussed in the next section.

2.5. Summary and Remaining Difficulties
Thus far we have reviewed the “classic” or “traditional” notion

of nonadiabaticity . There have been so many theories developed
in the spirit of this concept, many of which unfortunately lie
outside the scope of this article. Presumably, one of the simplest
yet more practical methods in this direction will result from a
combination of the surface hoppingmodel with the Zhu�Nakamura
formula.17

Most of the theories reviewed in this section commonly
assume that the nonadiabatic coupling is localized in a narrow
space around the crossing point (crossing seam). However, this is
often not the case. As seen in the example of the alkali halides, the
nonadiabatic coupling spreads across a very broad range and the
peak position of the coupling element lies far from the avoided
crossing. In the latter case, the local transition view is no longer
valid. Also, these theories are somewhat restricted in that they
assume that the potential functions are always given by quantum
chemistry. Consequently, they do not take into account the
dynamical changes in the electronic states. However, it is indis-
pensable, in the framework of modern theoretical and experi-
mental chemistry, that a methodology capable of faithfully carrying
out the electronic state mixing along nuclear paths be developed.
This is the main subject in the next section.
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3. COHERENT MIXING OF ELECTRONIC-STATES AND
ITS DECOHERENCE ALONG NUCLEAR PATHS

Since nonadiabatic transitions are of highly quantummechan-
ical nature, it is natural to treat nuclear dynamics in a quantum
mechanical or semiclassical manner. However, as a result of
severe computational limitations, it is now common practice to
use nuclear “classical” paths (not necessarily the Newtonian
trajectory). This is where the nonadiabatic transitions are reduced
to a problem of electronic state mixing caused by the nuclear
kinematic interaction. The idea to use a “classical” nuclear path
can be justified, since the wavelength of the nuclear matter wave
is generally short enough anyway to be approximated in terms of
a ray (trajectory-type) solution. The methods used to carry out
electronic state calculations, either wavepackets or stationary
states, along a nuclear path are collectively called the “on-the-fly
method”. More specifically, it is called ab initio molecular
dynamics (ABMD) or the first principle dynamics if an ab initio
eigenfunction of the electronic Hamiltonian is generated at each
nuclear configuration and the nuclei are driven by the Newtonian
force, which is calculated by using the energy gradient of the
electronic bound state. ABMD has already attained much popu-
larity in quantum chemistry (see refs 123 and 124 for examples of
chemical use of ABMD). However, the method is valid only in
the case where nonadiabatic interactions are negligible.

In the case of nonadiabatic electron wavepacket propagation
along a nuclear path, an interesting problem arises; namely, the
delicate and serious mismatching between the coherent electro-
nic-state mixing and the decoherence of the nuclear classical
dynamics. More explicitly put, how does the wavepacket bifurca-
tion shown in eq 19 manifest itself in a classical path representa-
tion? What kind of quantum effects from electron dynamics will
be expected to penetrate into classical nuclear subsystems? These
questions are all common to the general systems composed of
fast (quantum) and slow (classical) subsystems, which are
kinematically coupled. Therefore, the coherence�decoherence
problem in quantum systems surrounded by a classical moiety is
one of the general issues to be considered in many fields of
science.

3.1. Nuclear Paths Incorporating Electronic Motion in
Pechukas Path Integrals

To clarify the central problem, we first outline the path-
integral formulation125,126 of nonadiabatic dynamics, since a
classical approximation to quantum theory can be introduced
into this framework in a systematic and natural manner using the
stationary phase approximation.126 It was Pechukas114 who first
established a path integral formalism for a vibrational excitation
problem. This is theoretically equivalent to electron�nuclei
coupled dynamics. The theory gives a clear description of
electron�nucleus entangled dynamics. He first divided the
dynamical variables into two groups: those of nuclear motion
and those of electronic states. Here, the former are denoted as
R and the latter are labeled by state indices α, β, .... (In his
original formulation, Pechukas actually considered the atomic
collision problem and set the former as the coordinate of the
“heavy particle” and the latter as other “internal degrees of
freedom”.114) The total Hamiltonian is divided asH = T +Hel,
where T is the kinetic energy operator for the nuclei and Hel is
the electronic Hamiltonian (treated as the internal degrees of
freedom).

He then considered the transition amplitude of the system
from a state {R0,α} at time t0 to another {R00,β} at time t00. The

kernel connecting the two end points is given by

K β,αðR00, t00;R0, t0Þ ¼
Z R00

R0
DRðtÞ exp i

p
S½RðtÞ�

� �
K el

βα½RðtÞ�

ð36Þ
where S[R(t)] is the action for the heavy particle andK el

βα[R(t)] is
the transition amplitude of the electronic state for the nuclear
position R(t), defined as

K el
βα½RðtÞ� � lim

N f ∞
Æβje� i=pð ÞεHelðRðtN�1ÞÞ

� e� i=pð ÞεHelðRðtN�2ÞÞ 3 3 3 e
� i=pð ÞεHelðRðt0ÞÞjαæ

ð37Þ
where ε� (t00 � t0)/(N) is the time interval and tk� t0 + kε is the
kth time point with the time partition number being N. The path
integration is performed step by step. The integration of the
electronic degrees of freedom is performed at each given R(t),
which is a function of time, and that overR is to be carried out using
S[R(t)] + p/i ln Kβα[R(t)] as an effective action integral. Here we
assume that the path-integration of the electronic part is performed
in a quantummechanical manner. Although Pechukas did not show
how to perform the integrations, recent reports127,128 have figured
out the relevant method using the coherent-state path integrals
and so on. We then apply the stationary phase approximation to
the integral over R. The stationary phase condition gives rise to

M€R ¼ � Re
ÆβjÛðt00, tÞ ∂H

elðRÞ
∂R

Ûðt, t0Þjαæ
ÆβjÛðt00, t0Þjαæ ð38Þ

where

Ûðt00, t0Þ � lim
N f ∞

e� i=pð ÞεHelðRðtN�1ÞÞ

� e� i=pð ÞεHelðRðtN�2ÞÞ 3 3 3 e
� i=pð ÞεHelðRðt0ÞÞ ð39Þ

is the time evolution operator for the electronic degrees of
freedom. The force in eq 38, which we refer to as the Pechukas
force, is dependent on the initial and final statesα and β as well as
the path R(t), which is to be obtained as a solution of the
dynamics equation (eq 38). Therefore, the nuclear equation of
motion in eq 38 has to be solved in a self-consistent manner.
There is no general proof, however, that can guarantee that eq 38
has a global path(s) solution connecting the two given end
points. Even if it exists, it would not be easy to attain convergence
in such a self-consistent classical dynamics. These difficulties
reflect the quantum mechanical entanglement between the
nuclear and electronic motions in the sense of eq 19.

One remarkable property of the Pechukas force is seen in the
following conservation laws. Conservation of “energy” is assured by

d
dt

1
2
M _R2 þ Re

ÆβjÛðt00, tÞHelÛðt, t0Þjαæ
ÆβjÛðt00, t0Þjαæ

 !
¼ 0 ð40Þ

while the conservation of “angular momenta” for a system with
central symmetry becomes

d
dt

MR � _R þ Re
ÆβjÛðt00, tÞJ elÛðt, t0Þjαæ

ÆβjÛðt00, t0Þjαæ

 !
¼ 0 ð41Þ
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where J el � J tot �MR� _R is the angular momentum operator
for the internal degrees of freedom. Although the conserved
quantities in eqs 40 and 41 are not energy or angular momenta
in the usual sense, they lead to the conservation of the correspond-
ing quantities in the asymptotic region, where α and β label the
eigenstates of the corresponding quantities. If the initial and final
states are the energy eigenstates ofHel(R(t0)) andHel(R(t00)) with
eigenvalue Eα(R(t0)) and Eβ(R(t00)), respectively, then

EαðRðt0ÞÞ þ M
2
_Rðt0Þ2 ¼ EβðRðt00ÞÞ þ M

2
_Rðt00Þ2 ð42Þ

These conservation laws apply for each final state. In view of the fact
that nonadiabatic interaction leads to multiple final states from a
single initial state, the conservation laws as depicted in eq 42 apply
in a per-branch manner. Although simple looking in many other
approximation schemes, however, per-branch conservation does
not hold automatically. Indeed, mean-field schemes such as the
semiclassical Ehrenfest theory (SET) (see section 3.2 for details)
only conserve state-averaged quantities and sometimes lead to
severe violation of the conservation of per-branch energy. Surface
hopping algorithms including the Tully fewest switching method
can keep per-branch conservation only by imposing it on each
hopping. In view of the theoretical clarity of its derivation and the
favorable conserving natures, the Pechukas formalism, aside from
its hard tractability, is certainly one of the best theories for
extracting the essential nature of nonadiabatic dynamics in a mixed
quantum and classical representation.

Recently, Krishna developed a path integral approach to
electron�nucleus nonadiabatic dynamics where the electronic
part of the path integral is formulated in an explicit manner using
the coherent state representation.127 The electronic path inte-
gral, in discretized form, is given as

K el
βα½R� ¼

Z YN � 1

n¼ 0
fdμ½ξnðRnÞ� dμ½ηnðRnÞ�

� Æξnþ1ðRnþ1ÞjηnðRnÞæ

� ÆηnðRnÞje� i=pð ÞεHelðRnÞjξnðRnæg
�Æξ0ðR0ÞjαðR iÞæ ð43Þ

whereRn is the nuclear position at time tn, while dμξn[(Rn)] indicates
an appropriate path integralmeasure, andξN should be understood as
being β. From eq 43, it turns out that the derivative coupling terms in
the path-integral formalism arise from an overlap integral between
electronic basis functions at different nuclear positions as

Æξnþ1ðRnþ1ÞjηnðRnÞæ
¼ ∑

I, J
ξ�In þ 1ðδIJ � ðRnþ1 � RnÞÆΦIðRnÞj∇ΦJðRnÞæÞηJn ð44Þ

where the electronic states are expanded as |ξæ = ∑Iξ
I|ΦI(R)æ

with an appropriate basis set {|ΦI(R)æ}. Krishna then applied the
stationary phase approximation to the nuclear path integral to
obtain a classical nuclear equation of motion. In his paper,
Krishna attempted to set a theoretical foundation for the surface
hopping model of Tully.6,116 Thus, the resulting equation, eq 40
of ref 127, is different from eq 38 but rather close in nature to
eq 50 in that the force working on the nuclei is given in an explicit
and path-independent manner as the expectation value of
electronic operators.

Another contribution to the path-integral formulation has
been made by Hanasaki and Takatsuka,128 in which nonadiabatic

nuclear path dynamics manifestly represents the quantum wave-
packet bifurcation (recall section 1.3) in a path-branching
manner rather than the electron�nucleus self-consistent dy-
namics within a single path. This aspect highlights the funda-
mental aspects of nonadiabaticity and will be discussed in greater
detail in section 3.7.

3.2. Semiclassical Ehrenfest Theory as a Starting Model
In clear contrast to the Pechukas path integral formalism, the

semiclassical Ehrenfest theory (SET) rests on the rather intuitive
idea that electronic state mixing to propagate electronic wave-
packets should be explicitly taken into account along a nuclear
path, which is in turn driven by the Newtonian force (actually the
Hellmann�Feynman force) averaged over thus to-be-obtained
electronic wavepackets. This idea seems quite natural and has
attained much popularity. To describe SET more explicitly, we
first expand the electronic wave function |Ψ(R(t))æ at a nuclear
position R(t) in basis functions {ΦJ(R(t))}as

jΨðRðtÞÞæ ¼ ∑
J
CJðtÞjΦJðRðtÞÞæ ð45Þ

The most naive expression for the equation of electronic
motion is

ip
∂

∂t
CJ ¼ ∑

K
½Hel

JK � ip _RðtÞ 3XJK �CK ð46Þ

where

Xk
JK � ΦJðRðtÞÞ

����� ∂∂Rk

�����ΦKðRðtÞÞ
* +

ð47Þ

The propagation of |Ψ(R(t))æ is coupled with that of a nuclear
path R(t), with the force working on it being given as

Mk€Rk ¼ � ∑
J
∑
K

C�
J CK ΦJðRðtÞÞ

�����∂H
el

∂Rk

�����ΦKðRðtÞÞ
* +

ð48Þ
where Mk is the nuclear mass in the k-direction.

Since one can readily derive these equations in an analogous
way to that of the Ehrenfest theory, they seem to be correct.
However, in reality they are not quite right and indeed need some
correction terms, as we will discuss later. Also, when our
electronic basis set at hand {ΦJ(R(t))} is incomplete, which is
overwhelmingly the case, the force of eq 48 should be replaced
with the expression129

Mk€Rk ¼ � ∑
I, J,K

C�
I ðXk

IKH
el
KJ �Hel

IKX
k
KJÞCJ � ∑

IJ
C�
I

∂Hel
IJ

∂Rk
CJ

ð49Þ
This is a practical working equation, since theHellmann�Feynman
force is of low quality, in general, for a finite basis set.

SET gives quite a vivid view of electron wavepacket dynamics
in a very compact manner. It works quite well for a system with a
broad distribution of nonadiabatic coupling elements, and there
is no need to assume an explicit functional form of it. Besides,
SET has no particular difficulty in handling multidimensional
nonadiabatic systems. All these technical advantages are made
available by progress in ab initio quantum chemistry (see Appendix A
for this aspect).
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The most undesired characteristic of SET, on the other hand,
arises from eq 48. It is widely known that a nuclear classical path
propagated by the mean force as shown in eq 48 keeps running
on the resultant mean field without converging to one of
adiabatic potentials even in the asymptotic region far beyond
the nonadiabatic coupling region. This indicates that the
Born�Oppenheimer view, that a path should run on an adiabatic
potential energy surface, will be lost, once a path passes across
any one of the nonadiabatic region. This erratic behavior is often
ascribed to the persistence of electronic quantum-coherence
without decoupling ever.14 Exploring this aspect of coherence
and decoherence in mixed quantum and classical dynamics is one
of the main topics in the remaining part of this section.

Let us compare the mean-field force formulated in SET with
the Pechukas force of eq 48. This confirms that the former is not
quite right, which again gives us an opportunity to consider the
nature of the “classical force” working on nuclei in nonadiabatic
systems. For clarity, here we define what we call the mean-field
force as a force that is expressed as the expectation value of an
electronic matrix, which is essentially �∂Hel(R)/∂R, although
details may depend on methods. Thus, the Newtonian equation
of motion for nuclei should look like

M€R ¼ �
ÆαjÛðt0, tÞ ∂H

elðRÞ
∂R

Ûðt, t0Þjαæ
ÆαjÛðt0, tÞ Ûðt, t0Þjαæ ð50Þ

The difference between eq 50 and a more accurate one, eq 38,
should be clearly appreciated. As can be readily seen, the SET
dynamics can be integrated explicitly without iteration; this is in
contrast to eq 38. We also note that the conserved quantities are
also different. For example, that for energy-related quantity
becomes

d
dt

1
2
M _R2 þ ÆαjÛðt0, tÞHelÛðt, t0Þjαæ

ÆαjÛðt0, t0Þjαæ

 !
¼ 0 ð51Þ

which only states the conservation of the state-averaged energy.

3.3. Quantum Variables Mapped to Classical Ones: The
Meyer�Miller Method

We next proceed to an interesting variant of the SET. Imagine
a chemical reaction on a single PES, whose initial and final
vibrational quantum numbers are denoted as ni and nf, respec-
tively. In semiclassical theory, these quantized states are specified
in terms of the action integral satisfying the quantization condi-
tion such as

I
Cα
∑
j
pj dqj ¼ nα þ λα

2

� �
p ð52Þ

where {qj,pj} are the positions and the associated momenta,
respectively, in the initial or final states and λα is theMaslov index
along the circuit path Cα. The computation of the reaction
S-matrix from ni to nf in the classical S-matrix theory130�132 is
reduced to the problem of finding a classical trajectory connect-
ing those having the relevant action variables. This is an example
of mapping of a quantum degree of freedom to a (set of) classical
degree(s) of freedom. In this way, the quantum numbers are
replaced with the classical action integral. Meyer and Miller133

showed that an analogous mapping is also possible in the case of
nonadiabatic chemical reactions.

We start with an expansion of the expectation value of the
electronic Hamiltonian in a diabatic basis

ÆΨðtÞjHelðRðtÞÞjΨðtÞæ ¼ ∑
J,K

C�
J CKH

el
JK ð53Þ

Meyer andMillermap the quantum-mechanical degree of freedom
CK to a pair of classical degrees nK and qK, which are analogues of
“action” and “angle” variables, respectively, in the manner

CK ¼ ffiffiffiffiffi
nK

p
e�iqK ð54Þ

Equation 53 now becomes

∑
J,K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nJðtÞ nKðtÞ

q
eiðqJðtÞ � qKðtÞÞHel

JK � Helðn, q;RðtÞÞ ð55Þ

which is combined with the nuclear kinetic term as

Hðn, q;RðtÞÞ ¼ ∑
k

P2
k

2Mk
þ Helðn, q;RðtÞÞ ð56Þ

to give the total effective Hamiltonian. The variational principle
shows that the new variables now satisfy the Hamilton canonical
equations of motion such that

_nK ¼ � ∂Hðn, q;RðtÞÞ
∂qK

and _qK ¼ ∂Hðn, q;RðtÞÞ
∂nK

ð57Þ
which makes it possible to analyze the electronic dynamics with
the semiclassical propagator.

In practical applications of the above “classical” dynamics of
electrons to the classical S-matrix theory, the choice of the initial
phase degrees of freedom, {qK}, is crucial for a path initiated in
this manner to be able to reach the desired final condition on
{nK}. In order to realize the special condition nK(ti) = δK,α and
nK(tf) = δK,β, the electronic Hamiltonian of eq 55 has to be
further converted to a Langer-modified form,

Helðn, q;RðtÞÞ ¼ ∑
J,K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nJðtÞ þ 1

2

� �
nKðtÞ þ 1

2

� �s

� eiðqJðtÞ � qKðtÞÞHel
JK � 1

2 ∑K
Hel

KK

ð58Þ
If one can find such a path, the transition probability is then
obtained by

Pβα ¼ ð2πÞNs

�����∂nðtf Þ∂qðtiÞ

�����
�1

2
4

3
5 ð59Þ

where Ns is the number of states that are taken into account. On
the basis of the above reformulation, Sun and Miller134 demon-
strated the success of this nonadiabatic theory in three typical
models proposed by Tully by using their algorithm combined
with the initial value representation in path integration. Follow-
ing this work, Sun, Wang, and Miller135 also showed that a linear
approximation of the time correlation function can capture the
nature of nonadiabatic transition dynamics qualitatively quite well.

A similar type of semiclassical approach was developed by
Stock and Thoss.136,137 Here again electronic states and opera-
tors are “mapped” into c-number variables and treated classically:
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Quantum mechanical states {|ΦIæ} and the associated operators
are mapped into the Fock states {|n1, ..., nNæ} and to the
associated creation/annihilation operators {aI

†, aI} in the follow-
ing manner,

jΦIæ f j01, :::, 1I , :::, 0Næ

jΦIæÆΦJ j f a†I aJ ð60Þ
Then the creation/annihilation operators are transformed into
pairs of operators qI � (aI + aI

†)/(2)1/2 and pI � i(aI
† � aI)/

(2)1/2, which satisfy [qI,pJ] = ipδIJ. The total Hamiltonian (again
in a diabatic representation) becomes

H ¼ ∑
k

P2
k

2Mk
þ 1

2 ∑I, J
Hel

IJðqIqJ þ pIpJÞ � 1
2 ∑I

Hel
II ð61Þ

From the transformed Hamiltonian in eq 61, a classical
approximation is derived by the standard procedure of replacing
the operators qI, pI by classical variables and commutators to
Poisson brackets. The time evolution of these variables, together
with the nuclear degrees of freedom R and P, are calculated using
the semiclassical initial value representation (IVR) propagator.134,135

In construction, the method closely resembles the mean-field
method. The electronic part of theHamiltonian equation (eq 61)
is actually equivalent to the expectation value of eq 53 apart from
the last term in eq 61. However, there is one interesting aspect to
this mapping technique. Stock and Thoss136 claim that it can
reproduce the correct density of states in a double well model
whereas the mean-field approach cannot.

3.4. Tully’s Fewest Switch Surface Hopping Method and Its
Variants

As explained already in this review, the naive surface hopping
model allows a classical trajectory on an adiabatic potential
surface to jump from one to another at a specific point with a
transition probability borrowed from other theories. Although
this artificial procedure sometimes provides a good description of
population dynamics, depending on the geometrical condition of
nonadiabatic dynamics under study, the electronic coherence is
totally neglected. In other words, the dynamical self-consistency
between electrons and nuclei is totally violated. To overcome this
drawback, Tully proposed an algorithm which takes into account
the electronic coherence along a path, and the hopping points are
modified by the electronic transitions.6

The basic idea of the algorithm is to allow a path to jump with
the probability that is estimated internally (in a self-contained
manner) with the electronic-state mixing, as happens in the
semiclassical Ehrenfest theory, but the number of hops should
be minimized. If we have an electronic wavepacket |Φ(t)æ =
∑ICI(t)|ΦIæ as in the SET, the dynamics of the corresponding
density matrix, FIJ(t) � CI*(t) CJ(t), is written as

:FIJ ¼
1
ip ∑K

ðHIK � ip _R 3XIKÞFKJ �
1
ip ∑K

ðH�
JK þ ip _R 3XJKÞF�KI

ð62Þ

Our main interest is in its diagonal part, which is compactly
expressed as

:FII ¼ ∑
K

BIK ð63Þ

where

BIK � 2
p
ImfHIKFKIg � 2Ref _R 3XIKFKIg ð64Þ

Using this, one can estimate the transition probability going from
the state K to the state I during a short time step, τf τ + dτ, as

GIK �
0 ðBIK e 0Þ
BIKðτ þ dτÞ dτ
FKKðτ þ dτÞ ðBIK > 0Þ

8><
>: ð65Þ

This in turn can be used to determine stochastically the points of
trajectory hopping in the dynamics without any external param-
eter. One exception is that of nonclassical cases due to the
uncertainty principle.138 It should also be noted that momentum
scaling for energy conservation of a hopping trajectory cannot be
free of ambiguity with respect to its direction in a multidimen-
sional case. This may be partly augmented by using a semiclassi-
cal analysis.139,140 One can, however, make a compromise in
determining the number of hops and the quality of the transition
probability obtained. The “fewest switch surface hopping meth-
od” has been recently extended to a study of laser control of
electron�nuclear coupled dynamics. Here the time-dependent
electric field, rather than nonadiabatic coupling, causes a state
transition.98

Recently, Shenvi117 proposed using the scheme of the fewest
switching surface hopping algorithm combined with the so-called
phase-space adiabatic basis, which is defined as follows. Consider
that the Hamiltonian for nuclei is as follows

HJKðR,PÞ ¼ 1
2M

ðδJKP� ipXJKðRÞÞ2 þ Hel
JJ ðRÞδJK ð66Þ

where the nonadiabatic coupling is explicitly included. (See ref 16
for an extensive discussion and algebra arising from this gauge-
field type Hamiltonian.) It follows that one can now diagonalize
this matrix defined at each nuclear phase-space point, attaining
En(R,P) as its eigenvalues. Furthermore, if one regards En(R,P)
as a classical Hamiltonian, one can now generate classical paths.
In turn, these are used in the fewest switch surface hopping
method. Shenvi illustrated that this method, known as the phase-
space surface hopping method, gives an excellent nonadiabatic
transition probability even in a low energy case.

Another rather obvious aspect that needs to be improved is
that of classically forbidden transitions. Truhlar et al. proposed a
time-energy uncertainty approach as a remedy for jumping
positions.10

Furthermore, there are some theoretical problems remaining
which need to be discussed with a view to attaining the ultimately
ideal nonadiabatic-transition theory: Although a multihopping
trajectory converges to run on an adiabatic potential surface
asymptotically, the off-diagonal density matrix element FIJ(t)
does not actually vanish. This is ascribed to an incomplete
treatment of the nuclear-electronic entanglement. This issue,
often referred to as “the problem of decoherence”, has its origins
in the nuclear wavepacket bifurcation due to different slopes of
potential surfaces. This will be discussed more precisely below.

3.5. Notion of Decoherence in Quantum Subsystems and
Decoherence Time

Decoherence is an essential issue that appears in a system in
which a quantum subsystem is in contact with a classical subsystem
in one way or another. As is widely recognized, the SET cannot
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describe such dynamics, since there is no mechanism in it to
switch off the electronic coherence along the nuclear path. The
decoherence problem is critically important, not only in our
nonadiabatic dynamics but also in other contemporary science
such as spin-Boson dynamics in quantum computation theory
and, more extensively, in quantum theory in open (dissipative)
systems.141 The decoherence problem is also critical to chaos
induced by nonadiabatic dynamics.142�146 Therefore, in the rest
of this section, we will pay deeper attention to the aspect of the
effect of electronic state decoherence strongly coupled with the
relevant nuclear motion. A review regarding the notion of
decoherence related to quantum mechanical measurement the-
ory is found in papers by Rossky et al.147

Neria and Nitzan148 proposed an idea for “artificially” remov-
ing the electronic coherence by damping the off-diagonal terms
of the electronic density matrix. To do so, they defined a damping
time, or decoherent time, in terms of the characteristic time for a
wavepacket χ(t) running on a reference potential energy surface
to lose its overlap with its bifurcating counterpart into the Kth
surface χK(t). They assume such an overlap integral and approx-
imate it in a Gaussian process as

jÆχKðtÞjχðtÞæj≈ exp � ∑
n

ðFnð0Þ � FnKð0ÞÞ2
4anp

2 t2
 !

ð67Þ

Here an is a Gaussian width for the nuclear nth degree of freedom.
Fn(0) and FK

n (0) are the nth component of mean-force and Kth
adiabatic force vectors, respectively. This suggests that the
decoherence time τK is

τK ¼ ∑
n

ðFnð0Þ � FnKð0ÞÞ2
4anp

2

 !�1=2

ð68Þ

This property is expected to reflect the basic feature of “damping
of coherence”. Subtonik et al.149,150 proposed even more sophis-
ticated formulas to remove the artificial parameter an.

3.6. Decay of Mixing with Coherence Switching
In their studies of nonadiabatic dynamics in condensed

phases, Rossky and his co-workers emphasized the role of
stochastic perturbations that actually decohere the quantum
system that are surrounded by an outer classical system (solute
state). This is one of the most significant phenomena in the
dynamics of open systems. On the other hand, where nonadia-
batic dynamics within a single molecule or isolated molecular
reaction system is concerned, it is Hack, Jasper, and Truhlar7�10

who first devised how to implement the decay of electronic state
coherence, or decay of mixing, into the nuclear dynamics of an
individual path. Hence, they brought about the notion of a non-
Born�Oppenheimer path in an explicit manner.

As in the work of Neria and Nitzan,148 Truhlar et al. also
studied how the off-diagonal elements of the electronic density
matrix can vanish after the nonadiabatic coupling is switched off.
Then they introduced an external force into the semiclassical
Ehrenfest nuclear dynamics such that it can cancel the persisting
coherence. The construction of this force is rather artificial, but it
is quite well designed in such a way as to fulfill the conservation
laws of energy and linear momentum. It is summarized as follows.
Let us consider the semiclassical Ehrenfest dynamics of the off-
diagonal electronic density matrix F·IJSE, to which an additional
term F·IJD is added in the form of F·IJ = F·IJSE + F·IJD. Here, FIJD is
responsible for canceling the coherence remaining in FIJ

SE, thus

making the off-diagonal elements of FIJ vanish. To realize such
dynamics, the Hamilton canonical equations of motion (in the
SET dynamics) are modified by adding external velocity and force
in such a way that _R = _RSE + _RD and _P = _PSE + _PD, respectively, to
decohere in the electronic state mixing. These additional terms
( _RD, _PD) are designed such that they are switched off after a
decoherence time and asymptotically, and as a result, the path
should run on one of the desired adiabatic potentials. Various ways
of determining the key quantities, the decoherence time and
( _RD, _PD), have been proposed by the original authors.7�10 With
this intelligent but artificial treatment, a nonadiabatic path is
continuously evolved in time without surface hopping and with
the correct momentum and energy conserved. The electronic-
state mixing is carried out consistently along every non-Born�
Oppenheimer path. Thus, the transition probability may be
determined in terms of the ratio of the number of asymptotic
paths accumulated on the individual potential surfaces. On the
other hand, the electronic-state mixing, due to the semiclassical
Ehrenfest dynamics on each path, should give a nonadiabatic
transition-amplitude along with an associated phase. It is not clear
though whether these two pieces of information about transition
probability are always consistent with each other.

It is interesting to compare the Truhlar non-Born�Oppenheimer
path with those expected to emerge from the treatment accord-
ing Pechukas as in eq 38. In the latter, a non-Born�Oppenheimer
path, if it indeed exists, starts from one adiabatic potential energy
surface and it continues to another continuously without hop-
ping, yet it is being driven by the nonadiabatic coupling. It should
be remembered, however, that it can be determined only through
a self-consistent manner. This, of course, requires essentially an
iterative computation. This is the way of decoherence according
to the Pechukas theory. On the other hand, Truhlar’s theory
produces a smooth path connecting two different potential
energy surfaces without any self-consistent procedure. It is
therefore an interesting issue to comprehend how these two
paths are theoretically related. For instance, onemay be led to the
conjecture that if the Truhlar paths are geometrically akin to the
Pechukas paths, then Pechukas’ self-consistent procedure can be
avoided only by introducing an external force. This can further
lead to the conclusion that a global solution in the mechanics of
eq 38 does not always exist. This is not an absurd notion, if we
recall that the essential feature of nonadiabatic dynamics is, in fact
wavepacket branching, which is hard to represent directly in
terms of a set of continuous nonbranching global paths.

3.7. Spontaneous Entanglement andDecoherence between
Electrons and Nuclei along Smoothly Branching Non-
Born�Oppenheimer Paths

In order to overcome the difficulty associated with the SET
regarding the decoherence mechanism, some interesting and
theoretically exciting ideas and inputs have been proposed, as we
saw above. However, it seems to the present authors that most of
these studies simply accepted the SET as it stands. In other
words, to the best of our knowledge, there has been no clear
derivation of the semiclassical Ehrenfest theory in a way that
identifies and isolates the actual origin of the difficulty. This is
essential if progress is to be made.

Another aspect we have to take account to go beyond the SET
is the coupling of native nonadiabatic dynamics with the induced
one by intense pulse and continuous lasers. Almost all the classic
theories presented in the preceding section, from the Landau�
Zener to the primitive surface hopping method, are not designed
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to cope with this very important aspect of modern chemical
dynamics. Likewise, it is not easy to imagine that the methods
reviewed in this section, such as the fewest switch surface
hopping method and the method of natural decay of mixing,
can handle this problemwithout tremendous additional efforts in
reformulation. On the other hand, interestingly and ironically, it
is easy to incorporate the classical electromagnetic vector potential
into the SET. Hence, rather than abandoning this convenient
theory, we should really restart from the very basic point of
quantum-classical correspondence to identify the origin of the in-
built difficulties of the problem.
3.7.1. Mixed Quantum-Classical Hamiltonian in an

Optical Field. We now resume the study of nonadiabaticity
by representing the total Hamiltonian in a specific way, rather
than the standard one as shown in eq 1. In addition, an explicit
account of the classical vector potential A of an electromagnetic
field, according to our general scenario of electron dynamics in
laser fields, will be considered. First we will write the standard
form of the Hamiltonian as

H ðr,RjAÞ ¼ 1
2 ∑

3Nn

k¼ 1
P̂k � Zke

c
AkðRÞ

� �2

þ H elðr;RjAÞ ð69Þ
with H el(r;R|A) being the electronic Hamiltonian under the
electromagnetic field

H elðr;RjAÞ ¼ 1
2 ∑

3Ne

j¼ 1
p̂j þ e

c
AjðrÞ

� �2
þ Vcðr;RÞ ð70Þ

where Vc collectively denotes the electron�electron, electron�
nuclei, and nuclei�nuclei Coulombic interactions. R is the
collective vector of all the nuclear positions with P̂ = {P̂k|k =
1, ..., 3Nn} being the vector of associatedmomenta.Ne andNn are
the number of electrons and nuclei in a molecule, respectively.
Throughout this section, we use the mass-weighted coordinates,
in which all the masses are scaled to unity. Zke and c are the
nuclear charge and the light velocity, respectively, with� e being
the electron charge. The hats, as in P̂, denote the quantum
operators. Ak(R) and Aj(r) are the vector potentials of the
classical electromagnetic field, with the vector components x, y,
and z, and the particle positions of each nucleus and electron are
denoted collectively by the suffices k and j, respectively, in the
standard manner.
We next reexpress the Hamiltonian in eq 69, which is

represented in configuration space {r,R}, in the electronic
Hilbert space, and in nuclear configuration space, whose basis
is {|ΦI(R)æ|Ræ}, such that82,151

H ðR, elec,AÞ � 1
2 ∑k

P̂k � Zke
c
Ak � ip ∑

IJ
jΦIæXk

IJÆΦJ j
( )2

þ ∑
IJ

jΦIæH el
IJÆΦJ j ð71Þ

where XIJ
k � ÆΦI|(∂/∂Rk)ΦJæ and H el

IJ � ÆΦI|H
el(r;R|A)|ΦJæ.

By comparison of eq 71 with eqs 8, 56, and 66, ∑IJ in eq 71 may
include an integral over the continuum states. Although this is a
slight extension of the gauge-type Hamiltonian in nuclear con-
figuration space, such as in eq 8, the difference in outcome is
quite significant. This Hamiltonian manifests a parallelism be-
tween the electromagnetic effects and nonadiabatic coupling. It is

well-known that the Longuet�Higgins102 (or Berry103) phase
arising from nonadiabatic interactions induces an effect similar to
the Aharonov�Bohm effect.152 Also, a Lorentz-force-like term
arising from the nonadiabatic coupling is worth discussing.82

To attain a mixed quantum-classical representation, we classi-
calize the above Hamiltonian (eq 71) so as to make it more easily
accessible to its (approximate) solutions. This is done by simply
changing the nuclear momentum operator P̂k inH (R,elec,A) to
its classical counterpart Pk such that

~H ðR,P, elec,AÞ � 1
2 ∑k

Pk � Zke
c
Ak � ip ∑

IJ
jΦIæXk

IJÆΦJ j
 !2

þ ∑
IJ

jΦIæH el
IJÆΦJ j ð72Þ

The tilde overH indicates this type of mixed quantum-classical
representation.
The dynamical equations of motion for the electron wave-

packet are derived in terms of the time-dependent variational
principle, subject to

δ

Z
dt ÆΦðR, tÞj ip

∂

∂t
� ~H ðR,P, elec,AÞ

� �
jΦðR, tÞæ ¼ 0

ð73Þ
where ~H(R,P,elec,A) are the total Hamiltonian as defined in
eq 72. As usual, we expand the electronic wavepacket as

Φðr, t;RðtÞÞ ¼ ∑
I
CIðtÞ ΦIðr;RÞjR¼RðtÞ ð74Þ

where {ΦI(r;R)} are basis functions such as the Slater determi-
nants generated at each nuclear positionR. Hence, the electronic
dynamics is cast into the associated coefficients {CI(t)}. Taking
into account the right as well as the left variation in eq 73, we
obtain the coupled equations for the electron dynamics as

ip
∂

∂t
CI ¼ ∑

J
H el

IJ � ip ∑
k

Pk � Zke
c
Ak

� �
Xk
IJ

"

� p2

4 ∑k
ðYk

IJ þ Yk�
JI Þ
#
CJ ð75Þ

Equation 75 represents the generalization of the electron wave-
packet theory to the dynamics in the optical field.151 Note that
the second derivative coupling elements, YIJ

k � ÆΦI|(∂
2/

∂Rk
2)|ΦJæ, in this expression have no direct interaction with the

external vector potential A, while the first derivative coupling
elements XIJ

k do.
We next establish the nuclear equations of motion. The

classical analogue of the Hamilton canonical equations of motion
gives the following set of equations.151,153�155

d2

dt2
R k ¼ � ∑

IJ

∂

∂Rk
ðjΦIæH el

IJÆΦJ jÞ � Zke
c

∂

∂t
AkðR, tÞ

þ ip ∑
IJ
∑
l

_Rl
∂

∂Rk
ðjΦIæXl

IJÆΦJ jÞ � ∂

∂Rl
ðjΦIæXk

IJÆΦJ jÞ
� �

þ e
c ∑l

_Rl
∂

∂Rk
ZlAl � ∂

∂Rl
ZkAk

� �
ð76Þ

This is defined in the joint nuclear (R,P)-space and the electronic
Hilbert space. Therefore, to use this operator in practice, we
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should project it into a matrix form by sandwiching two electro-
nic states. For example, ÆΦI| and |ΦJæ give

F ia
IJ � ÆΦI jR€ia jΦJæ ¼ �∑

K
½Xia

IKH
el
KJ �H el

IKX
ia
KJ �

� ∂H el
IJ

∂Ria
þ ip ∑

nuc

b
∑
x, y, z

ib

_Rib

∂Xib
IJ

∂Ria
� ∂Xia

IJ

∂Rib

" #

þ ZaeðEa þ _Ra � BaÞiaδIJ ð77Þ

Here we have rewritten the suffixes such that a and b specify the
nuclei and ib, for instance, specifies one of the (x, y, z) coordinates
in the Euclidean space for the nuclei. Equation 77 is a natural
generalization of the classical force and is called the force matrix.
Equations 75 and 77 highlight the present mixed quantum-
classical dynamics beyond the Born�Oppenheimer framework,
and solving them simultaneously is our ultimate goal. We will
describe the relevant procedure to do so in section 3.7.3.
If a complete electronic basis were available, then the first three

terms in the rightmost hand of eq 77 can be combined into a
single term called the Hellmann�Feynman force

� ∑
K
½Xia

IKH
el
KJ �H el

IKX
ia
KJ � �

∂H el
IJ

∂Ria
¼ � ∂H el

∂Ria

 !
IJ

ð78Þ

Furthermore, it holds that

∂H el

∂Ria

 !
IJ

¼ ∂Hel

∂Ria

 !
IJ

ð79Þ

Thus, the effect of the laser field on the force matrix through the re-
organization of the electronic state should be quite limited (actually
zero for a complete basis set).Only the classical Lorentz forces work-
ing on the nuclei are the dominant contribution to the force matrix.
3.7.2. The Semiclassical Ehrenfest Theory Revisited

with Correction Terms. On the above theoretical basis, we
can now revisit the semiclassical Ehrenfest theory (SET). Going
back to the force (acceleration) operator in eq 76, let us take a
simple average of it over an electron wavepacket as represented in
eq 74. The result becomes

ÆΦjR€ ia jΦæ ¼ � ∑
I, J,K

C�
I ðXia

IKH
el
KJ �H el

IKX
ia
KJÞCJ

� ∑
IJ

C�
I

∂H el
IJ

∂Ria
CJ þ qaeðEa þ _Ra � BaÞia

ð80Þ
This expression is theoretically valid even for finite bases. But, if a
complete basis set were available, this expression would be
reduced to the form using the Hellmann�Feynman force as

ÆΦjR€ ia jΦæ ¼ � ∑
I, J

C�
I

∂H el

∂Ria

 !
IJ

CJ þ qaeðEa þ _Ra � BaÞia

ð81Þ
Furthermore, if the optical interaction for electrons is inde-
pendent of the nuclear coordinates, then theHellmann�Feynman

force in eq 81 turns out to be free of the optical term such
that

ÆΦjR€ ia jΦæ ¼ � ∑
I, J

C�I ∂Hel

∂Ria

 !
IJ

CJ þ qaeðEa þ _Ra � BaÞia

ð82Þ
These nuclear dynamical equations should be solved simulta-
neously with the electronic dynamics of eq 75. The second
order terms�(p2/4)∑k(YIJ

k + YJI
k/) in eq 75 are not found in the

conventional (intuitively derived) semiclassical Ehrenfest
theory.
Thus, the field-free semiclassical Ehrenfest theory has been

extended to the case of electron dynamics in a laser field within
the confines of the present theoretical scheme. In SET, the total
electronic and nuclear wave function with an initial electronic
wavepacket launched on a path RIi (the ith path on an electronic
state I) should be represented as

ΦIðr;RðtbeforeÞÞ δðR � RIiðtbeforeÞÞ

f δðR � ÆRæðtafterÞÞ ∑
adiabatic PES

K
CKðtafterÞ ΦKðr; ÆRæðtafterÞÞ

ð83Þ
Here the left-hand side denotes the initial wave function, while
the right-hand one represents a linear combination of the mixed
components due to the nonadiabatic interaction and/or laser
shining, and ÆRæ denotes a path running on the average potential
energy surface.
Some observations regarding the property of the SET are in

order at this point. As repeatedly emphasized, a path generated in
the mean-field in the sense of eq 82 is totally unphysical after the
passage of a nonadiabatic region in that it runs on an averaged
potential energy surface. This is simply because we (not nature)
keep taking an average of the force matrix as in eq 80 even after
the nonadiabatic interaction is finished. To be more precise, the
averaged potential in SET is simply a consequence of our wrong
use of the force matrix, eq 77. Therefore, we really should stop
averaging after the nonadiabatic interaction is switched off.
Nevertheless, where only a single passage is under considera-

tion, SET using a single path gives quite an accurate transition
probability (see ref 154 for numerical examples). This is because
the coherent electronic state mixing, represented by eq 75, is
taken into account all the way through the nonadiabatic interac-
tion region. In fact, the SET equations in intense laser fields,
using eqs 75 and 80 and neglecting �(p2/4)∑k(YIJ

k + YJI
k/), have

been applied extensively to chemical dynamics by the present
authors.82,151,156 In particular, the role of the nonadiabatic
coupling elements in electronic excitation with infrared lasers
has been highlighted;82 a calculation without the XIJ

k term
significantly underestimates the electronic transition.
3.7.3. Path Branching. We shall now seek out the correct

solutions for the coupled equations shown in eqs 75 and 77. The
electronic wavepacket propagates along nuclear paths that are
driven by the force matrix. Suppose we have an electronic
wavepacket Φ(r;R(t)) at a nuclear phase-space point (R,P).
To materialize an electronic-state mixing among given basis
functions {ΦI(r;R)} (either adiabatic or any diabatic basis), we
must first integrate eq 75 for a short time, say, Δt, to give a new
set of {CI(t)}. Next we want to run a path using the force matrix
F (R) of eq 77, again for a short timeΔt. To avoid the additional
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mixing due to the off-diagonal elements of the force matrix, we
diagonalize it at R such that

UðRÞ F ðRÞ UðRÞ�1 ¼
f1ðRÞ 0 3 3 3
0 f2ðRÞ
l ⋱

0
BB@

1
CCA ð84Þ

with the associated electronic basis-set transformation

UðRÞ
Φ1ðr;RÞ
Φ2ðr;RÞ

l

0
BB@

1
CCA ¼

λ1ðr;RÞ
λ2ðr;RÞ

l

0
BB@

1
CCA ð85Þ

The electronic wavepacket obtained, as shown above, can be re-
expanded in the eigenfunctions {λK(r;R)} such that

Φðr;RðtÞÞ ¼ ∑
K

DKðtÞ λKðr;RÞjR¼RðtÞ ð86Þ

so that each electronic component DK(t) λK(r;R) can be carried
by its own path, being driven by the eigenforce fK to reach a new
point after Δt. However, different eigenforces make different
paths, even if they start from a single phase-space point (R,P) as

ðR,PÞ f ðRK ,PKÞ ð87Þ
Therefore, a path at R should be branched into as many
components as the number of electronic states involved in the
nonadiabatic coupling. The electronic-state mixing must be
considered again at the individual points (RK,PK), thus making
the corresponding component DK(t) λK(r;R) in eq 86 renew,
such that the integration of eq 75 can be resumed. Hence, the
smooth cascade of path-branching should continue as long as the
nonadiabatic coupling cannot be effectively ignored. This path-
branching is a general feature of the dynamics of coupled
quantum and classical subsystems, which is a quantum-classical
representation of the quantum wavepacket bifurcation discussed
in section 1.3. It should be noted that this dynamically natural
branching requires no artificial hoppings, no extra force, no
decoherence timing, and no self-consistent procedure.
After both the nonadiabatic coupling and the laser are

switched off,

Xk
αβ ¼ 0 and A ¼ 0 ð88Þ

and the force matrix becomes diagonal

F k
αβ ¼ � δαβ

∂Eadβ
∂Rk

ð89Þ

It is of course most convenient to adopt the adiabatic wave
functions {ψα}, satisfying

Helψα ¼ Eadα ψα ð90Þ
whereHel is the field-free electronic Hamiltonian of eq 70. Thus,
each of the branched pieces of the path is supposed to run on one
of the adiabatic potential energy surfaces carrying the informa-
tion of electronic-state mixing (CKk(tafter), as shown below in
eq 91, and thereby, the Born�Oppenheimer view is revived
individually.
To emphasize how different the branching paths are from the

SET paths, it is pertinent to revisit eq 83. As a result of the fact
that an electronic wavepacket, launched initially on a path RIi

(the ith path on an electronic state I), undergoes bifurcation and

mixing, the propagation of the total wave function (before
quantization of nuclear paths) should be represented as

ΦIðr;RðtbeforeÞÞ δðR � RIiðtbeforeÞÞ

f ∑
adiabatic PES

K
∑
on K

k
CKkðtafterÞΦKðr;RKkðtafterÞÞ δðR � RKkðtafterÞÞ

ð91Þ
which indicates that the final paths labeled with k are supposed to
run on the Kth potential surfaces.
3.7.4. Averaging over the Branching Paths To Extract a

(Few) Representative Path(s): A Tractable Approxima-
tion. The exact and faithful treatment of the above branching
procedure leads to a cascade of infinitely many paths. However,
one can find several approximations to reduce the number of
paths to a finite level, thereby making the nonadiabatic calcula-
tion tractable. As an example, we now take the following “phase-
space averaging” of the to-be-branched paths. It is generally
anticipated that the fine branching paths should not geometri-
cally deviate much from each other in phase space for a short time
propagation. In other words, they should localize along a
representative path, forming a tubelike structure. Therefore, we
extract such a representative path by taking an average of phase-
space points in the following manner:
(i) Suppose we have a path ending at (ÆR(t)æ,ÆP(t)æ) in phase

space. At this point, the force matrix is diagonalized as
follows:

F ðÆRæÞjλKðÆRæÞæ ¼ jλKðÆRæÞæfKðÆRæÞ ð92Þ
to obtain the eigenforces {fK} and its eigenstates {|λKæ}.
The wavepacketΦ(r;ÆR(t)æ) is expanded in terms of these
eigenstates, as was shown in eq 86.

(ii) The K-th eigenforce drives a path starting from
(ÆR(t)æ,ÆP(t)æ) for a short time Δt in terms of the
Hamilton canonical equations of motion as

RKðt þ ΔtÞ ¼ ÆRðtÞæ þ ΔRK ð93Þ

PKðt þ ΔtÞ ¼ ÆPðtÞæ þ ΔPK ð94Þ

(iii) When they are averaged into the form

ÆRðt þ ΔtÞæ ¼ ÆRðtÞæ þ ∑
K

jDKðtÞj2ΔRK ð95Þ

ÆPðt þ ΔtÞæ ¼ ÆPðtÞæ þ ∑
K

jDKðtÞj2ΔPK ð96Þ

this makes the next point (ÆR(t +Δt)æ,ÆP(t +Δt)æ) of the
representative path.

(iv) With this averaged point, we calculate

F ðÆRðt þ ΔtÞæÞjλKðÆRðt þ ΔtÞæÞæ
¼ jλKðÆRðt þ ΔtÞæÞæfKðÆRðt þ ΔtÞæÞ ð97Þ

and return anew to step (ii). The successive applications
of the procedure (i)�(iii) give a single finite path.

Path generation using the above averaging procedure should
be performed simultaneously with the coherent electronic wa-
vepacket mixing through eq 75. Also, the force matrix in eq 92
and the weighting factors |DK(t)|

2 are renewed in their repeated
use as the path and electronic wavepackets are evolved in time.
Therefore, as in SET (see subsection 3.7.2), coherence among
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the electronic transition amplitudes is retained during the above
process.
3.7.4.1. Branching of the Averaged Path. Let us now stop the

averaging procedure at a point, which can be an exit point of the
interaction region or even an inner position in the coupling
region. Let us suppose that we are tracking one of the averaged
paths, say, the Kth path, (RK(t),PK(t)). To emphasize that every
force is generated along this path, we rewrite eq 84 explicitly as

UðRKÞ F ðRKÞ UðRKÞ�1 ¼
f1ðRKÞ 0 3 3 3

0 f2ðRKÞ
l ⋱

0
BB@

1
CCA
ð98Þ

where the dependence of the force matrix on RK has been
stressed. The right-hand side of this representation reminds us
that other eigenforces, say fL, are also calculated along RK(t).
Therefore, at a point on the path (RK(t),PK(t)), one can switch
the force from fK to fL to emanate another path, such that (RK(t),
PK(t))f (RL(t + Δt),PL(t + Δt)) is driven by fL. If one uses fK
at the same point, it follows that (RK(t),PK(t)) f (RK(t + Δt),
PK(t +Δt)). Thus, by applying this procedure, one obtains a path
that can naturally branch as soon as the averaging is terminated.
These are the first generation of path branching. Along these
branching paths, the momentum of the trajectory point varies
continuously with time. Meanwhile its time derivative obviously
does not, since the time derivative of the momentum is propor-
tional to the force. There are many possibilities when establishing
the criteria for branching.154,155,157 Further study in order to find
the best criteria is currently under way.
The individually branching paths of the first generation can

resume the averaging to the next branching points. This gives rise
to the second generation of branching and once again can
undergo further branching, if these are embedded in a strong
interaction region. On the other hand, if the path comes to an exit
point of the nonadiabatic and/or optical interactions, beyond
which the coupling effectively vanishes, the mixing of electronic
states is switched off and we no longer take the average as in
eqs 95 and 96. Instead, each individual component

DKðtÞ λKðr;RKðtÞÞ ð99Þ
is driven by its own force, which comes from the gradient of each
potential energy surface. As a result, the coefficients DK(t)
coherently carry the information of the transition amplitudes.
After the final branching at the exit point, electronic-state mixing
no longer occurs. The method presented in this section is
referred to as phase space averaging and natural branching
(PSANB).154,155

PSANB is similar to the semiclassical Ehrenfest theory in that
the coherent electronic-state mixing is performed along each
branching path. It is definitely different in that the averaging
which gives rise to such a non-Born�Oppenheimer path (or
nonclassical trajectory) is made over the force (SET) or per-
formed over the phase-space positions of the future-branching-
paths (PSANB). A path can bifurcate as many times as one
designates, and eventually, it converges to classical trajectories,
once all the nonadiabatic and optical couplings are nullified
(PSANB). Numerical examples of PSANB paths can be found in
ref 154, 155, and 157 and in Figure 13 in the present review.
3.7.5. Path Integral Analysis of Path Branching. The

above path branching dynamics, based on the force matrix, has

been reexamined using the path integral formalism,128 in which
all the electronic and nuclear coordinates are treated as c-number
from the outset. This procedure avoids classicalization of the
nuclear momentum operators, as was performed in eq 72. The
dynamics of path branching has been successfully reproduced,
and the authors analyzed the nature of paths from several
perspectives, including the conservation law of energy and
momentum. For instance, since the approximation of PSANB
takes an average of future-branching-paths in phase space, the
exact energy conservation along a path is generally no longer
guaranteed. The magnitude of its deviation depends on the
number of times of averaging. The path integral analysis thus
offers a guiding principle for the improvement of the averaging
procedure in the current procedure of PSANB.
3.7.6. What, in Fact, Is the Decoherence? The main

results of the studies described above concerning the kinemati-
cally coupled mixed quantum-classical dynamics can be summar-
ized as follows. A quantum subsystem undergoes a pure quantum
mixing among the electronic states with a slow change of the
classical subsystem (electronic-state coherence is involved). On
the other hand, the dynamics of the classical subsystem results in
an infinite number of cascades of path branching as a manifesta-
tion of the bifurcation of the nuclear wavepackets. Such path
branching never arises in the well-posed initial value problem
such as the Newtonian equation. This can happen because the
“classical” dynamics couples with the quantum subsystem. This is
known as “coherence”, and it penetrates into the classical
subsystem. Electronic-state coherence should always be accom-
panied by path branching. Meanwhile, as the nonadiabatic
couplings diminish, the branching terminates automatically (or,
in other words, decoheres) and converges so that each path
eventually runs on one of the adiabatic potential energy surfaces.
This is a picture of spontaneous decoherence we have obtained in
the theory of path branching.

4. REPRESENTATION OF THE TOTAL NUCLEAR AND
ELECTRONIC WAVE FUNCTIONS IN AN ON-THE-FLY
SCHEME

4.1. Semiclassical Quantization of non-Born�Oppenheimer
Nuclear Paths

At this point it is desirable to construct the total wave function
to proceed further beyond the mixed quantum and classical
representation. To do so, we should first prepare an initial
quantum wave function including both electronic and nuclear
components. Since the nuclear motion has been “classicalized” in
terms of path solutions, the initial nuclear wavepacket is trans-
formed into a phase-space distribution as an ensemble of initial
conditions of the paths. It is these non-Born�Oppenheimer
paths that should be quantized during their time evolution. For
purely classical paths (Born�Oppenheimer Newtonian paths
running on an individual potential energy surface), it is standard
practice to apply the Wentzel�Kramers�Brillouin (WKB) theory
in order to quantize them. However, the non-Born�Oppenheimer
paths such as those of PSANB are not this kind. In particular, it
should be remembered that the paths in the PSANB scheme are
continuously branching due to nonadiabatic interactions and an
external electromagnetic field. Therefore, it is one of the most
crucial parts in the theory of nonadiabatic transition to establish a
method to quantize such nonclassical paths. Below are described
some general attempts.
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4.1.1. FrozenGaussians: SpawningMethod ofMartı́nez.
Let us imagine a surface hopping model, in which a mother
path gives birth to a daughter path on a single hopping, leaving
two paths behind. The daughter path is also a classical one. It was
proposed by Martnez et al.139,158�161 that each nuclear path can
be partly quantized by placing a frozen Gaussian function
(Gaussian functions with a fixed exponent totally irrespective
of the underlying dynamics162) individually. In fact, their entire
method is rather sophisticated in that they use electronic-state
mixing to identify the hopping points. Since these paths run on
the adiabatic PESs, the action integrals can be readily evaluated.
In addition, within this context, the Heller thawed Gaussian ap-
proximation or the WKB theory can be applied. Many extensive
applications of the so-called spawning method have been made
to the analyses of nonadiabatic dynamics.118,139,158�161

The greatest advantage of the frozen Gaussian is its simplicity,
with the result that it can be applied to many generalizations
of the naive surface hopping method and so on. For instance,
it is not difficult to imagine that the spawning method can
be applied to the fewest switch surface hopping method.6 It
can also be applied to the natural decay of mixing method of
Truhlar et al.7�10 as well as to the branching paths in the PSANB
method.
On the other hand, the obvious concern regarding this method

is the inaccuracy arising from freezing the Gaussian exponents
(see below in section 4.5 though). It is desirable, therefore, to
seek a more satisfactory theory for quantizing the nonclassical
path as efficiently or more so than that of the WKB theory.
4.1.2. Action Decomposed Function in Laser Fields for

PSANB. The action decomposed function (ADF) is a candidate
for quantizing non-Born�Oppenheimer paths much more
accurately.157,163 It is outlined below. Let us consider the
following nonrelativistic Schr€odinger equation in an electromag-
netic vector potential

ip
∂

∂t
χðR, tÞ ¼ 1

2 ∑k
1
Mk

P̂k � Zke
c
AkðRÞ

� �2
þ VðRÞ

" #
χðR, tÞ

ð100Þ
where P̂k is the quantum momentum operator

P̂k ¼ p

i
∂

∂Rk
ð101Þ

and it should be distinguished from its classical canonical
momentum Pk. Here again, we resort to the mass weighted
coordinates, rescaling all the masses to

Mk ¼ 1 ð102Þ

The velocity of a particle is correlated with its momentum in such
a way that

vk ¼ Pk � Zke
c
Ak ð103Þ

The classical counterpart of this dynamics is represented in the
following Hamilton�Jacobi equation

∂

∂t
SðR, tÞ þ 1

2 ∑k
∂SðR, tÞ
∂Rk

� Zke
c
Ak

� �2
þ VðRÞ ¼ 0

ð104Þ

where the momentum is generated through the action integral as

Pk ¼ ∂SðR, tÞ
∂Rk

ð105Þ

Here we set the total wave function as shown in the following
equation

χðR, tÞ ¼ exp
i
p
SðR, tÞ

� �
FðR, tÞ ð106Þ

After some manipulation, we have an equation of motion
which can be used to determine F(R,t) as follows

∂FðR, tÞ
∂t

¼ � v 3∇� 1
2
ð∇ 3 vÞ þ i

2
p∇2

� �
F ð107Þ

It should be noted that this ADF equation is in exactly the same
form as that for the field-free case.157,163 This is not surprising,
since the ADF equation represents the kinematics only.
One of themost important features of theADF lies in the fact that

its determining equation (eq 107) is composed of the velocity field
only. The function F(R,t) can be integrated along a path if it is
uniquely specified in phase space (R(t),v(t)). Technically, we do
not have to care about how the information of (R(t),v(t)) has been
given. Even the presence of a well-defined potential function is not
required, as is the case in our branching path case. Likewise, the
action integral S(R,t) can be integrated along a path under the same
conditions. Thus, the ADF can be effectively applied to the quan-
tization of nonclassical paths, provided only (R(t),v(t)) is available.
Among many possibilities in an application of ADF, we

particularly choose the normalized variable Gaussian (NVG), a
semiclassical Gaussian approximation to ADF. The ADF equa-
tion, eq 107, can be transformed into an integral form such that

FðR � Rðt þ ΔtÞ, t þ ΔtÞ

¼ exp Δt � 1
2
∇~3 vB þ ip

2
∇~2

� �� �
FðR � RðtÞ, tÞ ð108Þ

to which one can then apply the so-called Trotter decomposition.
F(R� R(t),t) is approximated in terms of the Gaussian function

FðR � RðtÞ, tÞ ¼ π�N=4½detðΓ þ Γ�Þ�1=4

� exp½ � ðR � RðtÞÞTΓðtÞðR � RðtÞÞ�
ð109Þ

It was found that the Gaussian of the inverse exponent

ΓðtÞ ¼ 1
CðtÞ þ iDðtÞ ð110Þ

is particularly useful.164 The exponent C(t) is responsible for
describing the velocity gradient only, �(1/2)rB 3 vB in eq 108,
whileD(t) reflects the dynamics not only for the velocity gradient
but that arising from the quantum diffusion term, (ip/2)rB2 of
eq 108. The Planck constant appears only in the quantum
diffusion term. Therefore, only D(t) needs to be scaled to the
magnitude of p. See refs 154, 155, 157, and 164 for the practical
implementation and applications of PSANB paths.

4.2. Branching-Path Representation of the Total Wave
Function

Accumulating all the dynamical components as constructed
above, we can now build total electronic and nuclear wavepackets
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along the non-Born�Oppenheimer paths as follows

Ψtot
OTFðr,R, tÞ ¼ ∑

state

K
∑
path

k
ΦKðr, t;RKkðtÞÞ CKkðtÞ

� FðR � RKkðtÞ, tÞ exp i
p
SðR � RKkðtÞÞ

� �
ð111Þ

Here the suffix OTF stands for on-the-fly and F(R � RKk(t),t)
may be an ADF. This representation of the total wave function is
a little different from the standard Born�Huang expansion,
which, for comparison, is

Ψtot
QMðr,R, tÞ ¼ ∑

state

K
ΦKðr;RÞ χQMK ðR, tÞ ð112Þ

Then it is clear that rigorous comparison between these wave
functions is required to be made in the (r,R) space, even if the
common electronic basis functions are used. Or, formally, we
carry out an integration

χOTFK ðR, tÞ ¼
Z

dr Φ�
Kðr;RÞ Ψtot

OTFðr,R, tÞ ð113Þ

to attain the Born�Huang expansion fromΨOTF
tot (r,R,t). To avoid

such a tedious task, we rewrite thewave function given in eq 111 by
assuming that F(R � RKk(t),t) is well localized spatially. As an
extreme approximation, we can set F(R � RKk(t),t) = δ(R �
RKk(t)), which leads to the approximationΨOTF

tot (r,R,t) as

Ψtot
OTFðr,R, tÞ = ∑

state

K
ΦKðr, t;RÞ ∑

path

k
CKkðtÞ

� FðR � RKkðtÞ, tÞ exp i
p
SðR � RKkðtÞÞ

� �

¼ ∑
state

K
ΦKðr, t;RÞ χOTFK ðR, tÞ ð114Þ

which has the obvious definition

χOTFK ðR, tÞ ¼ ∑
path

k
CKkðtÞ FðR � RKkðtÞ, tÞ exp i

p
SðR � RKkðtÞÞ

� �

ð115Þ
As a result this makes it possible to compare it with its quantum
mechanical counterpart, χK

QM(R,t). It should be remembered that
the CKk(t) terms included in the nuclear wavepacket χK

OTF(R,t) of
eq 115 originally emerged from the electronic wavepacket bifurca-
tion along the branching paths.

The quantization effects of the nuclear paths on the actual
mixing of the electronic states, as described above, remain a
further challenge165 (see also the discussion of section 4.5).
However, our numerical calculations have clearly demonstrated
that the nonadiabatic transition probabilities given so far are excellent
without any consideration of such secondary effects.154,155,157,164

4.3. Numerical Examples of the Branching-Path Representation
Before proceeding to the further development of theory, we

would like to graphically illustrate what the geometry of branch-
ing paths emerging from the PSANB scheme and the associated
quantities looks like. Two examples will be shown: one without a
laser field and the other representing a path-branching due to

nonadiabatic coupling and a vector potential. To clarify the
geometrical view, both systems are chosen to be one-dimensional.
For the same reason, we here allow the paths to branch only once
at each interaction: nonadiabatic or optical. Therefore, this is the
lowest and simplest level approximation in the PSANB scheme
(see sections 3.7.3 and 3.7.4). In reality, infinitely many path-
branchings should be allowed to achieve exactness in the mixed
quantum-classical dynamics. Such numerical examples for multi-
ple-branching can be seen in refs 154, 155, 157, and 164. The
technical details, such as a threshold condition under which a
path branches, have been described in ref 155.
4.3.1. A System of Nonadiabatic Coupling with Reflec-

tion. The first system is the so-called one-dimensional model of
extended coupling with reflection, which was proposed by Tully
as one of the model systems for a stringent test in his study of the
fewest switching surface hopping algorithm.6 We have slightly
modified this model so as to raise the barrier height a little. First,
the following diabatic representation is given analytically as

V11ðRÞ ¼ A
V22ðRÞ ¼ �A
V12ðRÞ ¼ V21ðRÞ ¼ B expðCRÞ for R e 0
V12ðRÞ ¼ V21ðRÞ ¼ Bð2� expð � CRÞÞ for R g 0

ð116Þ
with A = 6� 10�4, B = 0.15, and C = 0.9. The mass is set to 1000
au. (The atomic units are used in this subsection.) The adiabatic
potential curves along with the nonadiabatic coupling element,
all being generated by diagonalizing the above diabatic potentials,
are graphically represented in Figure 1 panel A. Panel B, the left
box shows the history of branching of a path starting at R =�10.0
on the lower potential curve (in red in panel A) with k = 20.0
(the classical momentum is given by pk. The path is first
propagated in time and driven by the force matrix, but those
to-be-branched-paths are averaged in phase space to form only a
single path until a point marked with the first green square, which
is located close to an exit of the inidividual coupling region, and
hence, the nonadiabatic coupling element is sufficiently small.
The path is branched there to two pieces, one running down on
the lower slope and the other making a transition to the upper
curve. The latter eventually undergoes reflection by the potential
barrier and returns into the nonadiabatic region. After the similar
averaging process of to-be-branched-paths, it further bifurcates
into two pieces, running on the ground state (in red) and the
excited state (in blue). (Note that the last two branching paths
are not geometrically distinguished in this scale.) Thus, three
paths have been smoothly generated after all.
In the central box of panel B is displayed the similar history of

the densities |χ1(R,t)|
2 and |χ2(R,t)|

2 for the nuclear wavepacket
χ(R,t) = (χ1(R,t), χ2(R,t)) in the adiabatic representation.
χ1(R,0) was chosen to be the so-called minimum uncertainty
coherent-state Gaussian centered at R = �10.0 with k = 20.0 on
the ground state, while χ2(R,0) = 0. Only the components of
|χ1(R,t)|

2 and |χ2(R,t)|
2 that are higher than a threshold value are

graphically exhibited. The inspection shows very clearly that both
the geometrical and branching behaviors of the PSANB paths are
quite similar to those of the full quantum mechanical counter-
parts. The third box from the left of panel B indicates that not
only the geometrical behavior but also the transition probability
is in excellent agreement, in which the total population found on
the excited state at time t is represented as a green dotted curve
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and the red solid one is estimated with full quantum mechanics
and PSANB, respectively.
We next survey the energy dependence of the dynamics. To

see this, we have calculated a time integral of the flux of the
probability current (PT) that passes through the point R = 7,
which is far from the interaction region. (Quantum mechanical
flux will be discussed in a detail in section 5.1.) PT is the
accumulated population passing across the point by time t. We
examined three cases, each having the initial wavenumber k =
12.5, 20.0, and 27.5, respectively. Only the initial condition of k =
27.5 can give birth to a path that can mount the barrier of the

excited state, and those paths of k = 12.5 and 20.0 should be
reflected by it. Panel C shows the PT values that are estimated in
terms of PSANB-NVG and the full quantummechanics for these
three cases. PT values on the ground state are denoted by a red
solid curve (PSANB) and red circles (full quantum mechanics),
while those on the excited state are represented by a blue dotted
curve (PSANB) and blue squares (full quantum mechanics).
Only in the case of k = 27.5 are nonzero values of PT for the
excited state observed. As seen in the graphs, the PSANB-NVG
reproduces the full quantum values excellently.
Finally, we examine the nuclear wavepackets approximately

extracted from the PSANB-NVG function in the manner of
eq 115. Panel D presents five snapshots of the real part of the
PSANB-NVG function (in blue dotted curves) at k = 20 and the
corresponding full quantum values (in red curves) at times 150,
350, 550, 750, and 950. Each box contains the ground and excited
potential curves (the copy of panel A). The wave functions on the
ground (excited) state are drawn in a lower (higher) level in each
box. At time as early as t = 150, the wavepacket begins to
bifurcate, and at t = 750, we see the ground-state wavepacket
running out of the place. At t = 950, only the reflected wave in the
excited state remains, which is about to bifurcate again. As seen in
this panel, the agreement of the two wave functions, both starting
from a single coherent Gaussian, is very good up to the phase.
4.3.2. Multiple Path-Branching Due to Nonadiabatic

Coupling and Laser Field. We next study the path branching
and the associated wave functions in a systemwhere both a vector
potential and nonadiabatic interaction coexist. The system we
adopt here is the same as that taken in ref 157. The adiabatic
potentials and nonadiabatic coupling element are depicted in
panel A of Figure 2. The field parameters for pulses are as follows;
the strength of the electronic field Es1 = 0.03, the central peak
time tc1 = 215, the width duration time tw1 = 50, the central
frequency ω1 = 0.290, and the carrier envelope phase δ1 = π/2.
Thewavepacket begins to run fromR= 4.0 toward the left with

k = �30.0 on the ground state. It first bifurcates due to the
nonadiabatic coupling, and then the laser is applied, which is
turned on as in the rightmost box (denoted as Field) in panel B of
Figure 2. The two wavepackets already bifurcated to the ground
and excited states individually undergo the next bifurcation by
this vector field, giving birth to four components. Further, each
hits a turning point on one of the left slopes and returns to the
nonadiabatic region, and each further bifurcates at an individual
timing. Such a history of the quantum wavepacket, actually the
squaremodulus of it, is shown as in the above example inR� t space
in the second box (denote as QM) of panel B in Figure 2. The red
and blue codes are used to represent the ground and excited state
components, respectively. (Since transparent painting is not used
here, the figure does not faithfully represent their overlapping.)
The first box (marked with SC) in panel B of Figure 2 shows a

history of the corresponding PSANB paths. The color assign-
ment to the paths is the same as that in the quantum counter-
parts. The small green squares indicate points where the
averaging process in PSANB is finished and branching is allowed,
which are located at an exit area of the nonadiabatic and/or
optical interactions. It is immediately recognized that the geo-
metry and history of the path-branching are quite similar to those
of the full quantum wavepackets. Thus, even the simplest
application of the PSANB successfully represents the smooth
branching geometry of the quantum wavepackets.
Finally, we track the history of the transition probability of

this process, by examining the population on the excited state

Figure 1. Branching path representation and its comparison with the
full quantum counterparts in the extended coupling with the reflection
model system (all quantities in atomic units). (A) Adiabatic potential
curves and nonadiabatic coupling element as functions of the coordinate
R. (B) [Left labeled with SC] Branching paths in R� t space. The initial
condition is R = �10 and k = 20 on the ground electronic state. Red
(blue) curves represent paths “belonging” to the ground (excited) state.
[Middle with QM] Tracks of the corresponding quantum wavepackets.
[Right] Population in the excited state. Red solid and blue dotted curves
represent the PSANB-NVG and full quantum values, respectively. (C)
Time integral of the flux of the probability current in the positive direction
at R = 7. The initial wavenumbers of the wavepackets are k = 12.5, 20.0,
and 27.5. The results by the branching path representation for the upper
and lower electronic states are depicted, respectively, by blue dotted and
red solid lines. Full quantum mechanical results are correspondingly
presented by red solid circles and blue squares. (D) Snapshots of the real
part of the PSANB-NVG and full quantum wave functions at selected
times. Blue dotted and red solid curves denote the wave functions for
PSANB-NVG and full quantum mechanics, respectively.
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(denoted as p2). The third box from the left displays p2 given by
the full quantummechanics (red solid curve denoted asQM) and
the PSANB-NVG (green dotted curve marked with SC).
Although we notice a minor deviation between the two, it is
surprising that the PSANB starting from a single path marks such
a good achievement after three times of branchings. Again, we
note that we have established a general method to runmore paths
in the initial state.157

4.4. Electronic Wavepackets Extracted from the Total Wave
Function

In eq 115 we have shown how it is possible to make an
approximate extraction of the nuclear wavepacket in the
Born�Huang expansion from the on-the-fly total wave function.
Conversely, de Vivie-Riedle and co-workers166 proposed an
interesting method for the extraction of an electronic wavepacket
from a total wave function in the form of a Born�Huang
expansion as in eq 112. In a study of time-dependent problems
such as molecular propagation under an intense laser field, it is
often interesting to visualize the electron dynamics around a slow
nuclear motion. First let us assume that the close coupling
equation under a dipole field for the nuclear part shown below
is solved

ip
∂

∂t

χg
χu

 !
¼ Tnuc þ Vg �μðRÞ εðtÞ

�μðRÞ εðtÞ Tnuc þ Vu

 !
χg
χu

 !

ð117Þ

Here the dipole interaction μ(R) ε(t) by a laser field is
considered to lie between gerade (g) and ungerade (u) electronic
states. As a result, one can build a total wave function in the

Born�Huang expansion approximately, which is denoted as
Ψ~ mol(R,r,t). So far, nonadiabatic coupling has not been taken
into account, but such an extension is formally straightforward.
The above total wave function is then rewritten as

Ψ
~
molðR, r, tÞ f ∑

I
χIðR, tÞΦIðr;RIðtÞÞ ð118Þ

Here RI(t) � R
dRχI*(R,t)R̂χI(R,t) was used to pick up the

propagated electron wavepacket at a representative nuclear
position RI(t) at a time t, andΦI is the electronic wave function.
χI is either χg or χu as obtained above. These electronic packets
are defined by the following projection as

ϕ
~
1ðr, t;RðtÞÞ
ϕ
~
2ðr, t; BðtÞÞ

 !
�

Æχg jΨ~molðR, r, tÞæR
ÆχujΨ~molðR, r, tÞæR

0
@

1
A ð119Þ

where the last integrals in eq 119 should be carried out over the
R-coordinates. Some numerical techniques and assumptions are
required in this procedure.166 It should be noted that ϕ~(r,t; R,t)
attains a proper phase. This method is applied to the system in an
attempt to design and control the electronic states induced by lasers
as well as the dynamics of the nearby conical intersections.167

4.5. Remixing of Electronic States To Incorporate the Quan-
tum Nature of Nuclear Dynamics and the Interference
among the Paths

What we have surveyed for the mixed quantum-classical
dynamics thus far in this section is to consider (i) how the
electronic state mixing is performed along non-Born�Oppenheimer
paths or the locally classical paths in the hopping scheme and
then (ii) how these resultant nuclear paths are quantized. Conse-
quently, the subsequent effect of the quantization of nuclear paths
on the electronic state mixing has not yet been considered. Also,
it should be remembered that, in most of the theories discussed
above, the electronic-state mixing is performed independently
along each path.139 However, after hopping or branching, paths
coresiding in a strong nonadiabatic region can still interfere, as in
the final state interaction. (This procedure reminds us of the self-
consistent procedure of Pechukas as discussed in section 3.1.)
These effects are also missing, at least theoretically, in these. The
seminal step to resolving this issue was once again made by
Martnez and co-workers.

Consider the totalHamiltonian, Ĥ =�(p2/2)∑k
nuc(1/Mk)∂

2/∂Rk
2+

Ĥel, where k denotes a nuclear degree of freedom andMk presents its
correspondingmass. A total electronic and nuclear wave function
given by the on-the-fly scheme is generally written as

Ψðr,R, tÞ ¼ ∑
el state

I
∑
NIðtÞ

i
Ci
IðtÞ χiIðR;R i

IðtÞ,Pi
IðtÞ, γiIðtÞÞ

�ΦIðr;R i
IðtÞ,Pi

IðtÞÞ ð120Þ

The function in eq 111 represents an example. In the multiple
spawning method developed by Martnez et al., the time-depen-
dent Gaussian nuclear wavepacket basis functions χI

i(t) are
supposed to be parametrized with their guiding centers in phase
space, {RI

i(t),PI
i(t)}, and width matrix, γI

i(t). The classical phase
is implicitly included in the nuclear basis. I denotes an electronic
state and i labels a guiding center (path) running on it. The
electronic basis function, ΦI(r;RI

i(t),PI
i(t)), is carried along

Figure 2. Path branching due to nonadiabatic and optical interactions
(in atomic units). (A) Adiabatic potentials and nonadiabatic coupling
element. Field parameters for the pulse laser; the strength of the
electronic field Es1 = 0.03, the central peak time tc1 = 215, the width
duration time tw1 = 50, the central frequencyω1 = 0.290, and the carrier
envelope phase δ1 = π/2. The wavepacket begins to run from R = 4.0
toward the left with k = � 30.0 on the ground state. (B) [Left] Path
branching in the PSANB scheme. Red (blue) curves represent paths
“belonging” to the ground (excited) state. [Second from left] History of
the full quantum wavepacket bifurcation. [Third from left] Time
variation of the population on the excited state. Green dotted and red
solid curves represent the PSANB and full quantum values, respectively.
[Right] Optical field applied.



522 dx.doi.org/10.1021/cr200096s |Chem. Rev. 2012, 112, 499–542

Chemical Reviews REVIEW

(RI
i(t),PI

i(t)), satisfying ÆΦI|ΦJæ = δIJ at each given nuclear
position. The idea itself is rather straightforward: Substituting the
wave function from eq 120 into the total Schr€odinger equation,
ip|Ψ

· æ = Ĥ|Ψæ, makes it possible to determine the electronic
mixing coefficients CI

i(t). The functions χI
i(R;RI

i(t),PI
i(t),γI

i(t))
ΦI(r;RI

i(t),PI
i(t)) are therefore regarded as basis functions to

expand Ψ(r,R,t). The determining coupled equations obtained
after some appropriate approximations are not simple but can be
derived in a seemingly compact form as

ip ∑
i
½SjiJJ _ciJ þ _

S
! ji

JJ c
i
J � ¼ ∑

αi
Tji
αJJ c

i
J þ ∑

Ii
H̅ji

JIS
ji
JI c

i
I

� p2 ∑
αIi

1
Mα

FjiαJI f̅
ji
αJI c

i
I ð121Þ

Here a generalized nuclear kinetic operator supermatrix is TαJI
ji �

�(p2/2Mα)ÆχJj|3α
2 |χI

iæ. α denotes atoms. The terms SJI
ji � ÆχJj|χIiæ

and S
!3

JI
ji � ÆχJj|χ

·
I
iæ which appeared in this equation of motion are

nuclear wavepacket transition coupling matrix elements induced
from the zeroth- and first-order time derivative, respectively. The
nuclear derivative terms consist of FαJI

ji � ÆχJj|3α|χI
iæ, fαJIji �

ÆΦJ
j|3α|ΦI

iæ. The electronic potential matrix elements are de-
scribed in the formHJI

ji � ÆΦJ
j|Ĥel|ΦI

iæ. Practically, the two center
electronic integrals, fαJI

ji and HJI
ji , often demand much computa-

tional effort and ultimately require practical approximations. An
overbar in the equation denotes an approximation of one center
electron integral, the details of which, along with other technical
matters, can be found in refs 168 and 169.

Clearly, the essence of Martínez’s work as described above both
inspired andproves useful for thewave function of PSANB in eq 111
to improve the electronic mixing coefficients CKk(t) in order to
incorporate the quantum nature of nuclei into the electronic-state
mixing. However, it has been shown numerically154,155,157 that the
wave function in eq 111 is already very accurate before such
remixing.

5. NONADIABATIC DYNAMICAL ELECTRON THEORY
FOR CHEMICAL REACTIONS: CASE STUDIES

This section is devoted to the presentation of three case
studies of nonadiabatic electron wavepacket dynamics as carried
out by the present authors. These examples are used to stress the
fact that the theory of electron dynamics thus far developed is
indeed worth studying more extensively.

5.1. Characteristic Quantities Emerging from Dynamical
Electron Wave Functions

Before presenting the numerical studies, we first select two
quantities that are particularly useful for tracking electron dynamics
induced by chemical reactions and/or laser applications.
Current of Probability Density. Let

ip
∂

∂t
ψðr, tÞ ¼ � p2

2m
∇2 þ Vðr, tÞ

" #
ψðr, tÞ ð122Þ

be a one-body Schr€odinger equation and consider that the flux
vector naturally arises as170

jBðr, tÞ ¼ p

2im
½ψ�ðr, tÞ∇ψðr, tÞ �ψðr, tÞ∇ψ�ðr, tÞ� ð123Þ

This is automatically followed by the N-particle extension

jBNðr1, r2, :::, rNÞ ¼ p

2im
ðψ�ðtÞ∇~NψðtÞ �ψðtÞ∇~Nψ�ðtÞÞ

ð124Þ
with

∇~N ¼ ∑
N

j¼ 1

∂

∂xj

∂

∂yj

∂

∂zj

 !
ð125Þ

This N-body flux is readily reduced to the one-particle flux

jBðrÞ ¼ N
Z

jBNðr, r2, :::, rNÞ dr2:::drN ð126Þ

For a complex-valued wave function such as those given by
SET and PSANB, this flux vector gives a nonzero value, which
represents an electron current induced by configuration mixing
caused by the nonadiabatic coupling and/or other external
perturbations. If, on the other hand, a wave function is real-
valued as in stationary-state quantum chemistry, jB(r) is identi-
cally zero, simply because such a stationary-state wave function
does not know to which time-direction it is proceeding. Flux
analyses have been made extensively for electron flow associated
with proton transfer dynamics, laser application, chemical reac-
tions, and so on,99,100,156 and those arising from nuclear-electro-
nic wave functions have been thoroughly investigated by Manz
and co-workers.90,101,171,172

Complex-Valued Natural Orbitals in Electron Wave-
packet Dynamics. The natural orbitals, which are eigenfunc-
tions of the first order density matrix, are among the well-known
quantities in standard quantum chemistry. However, the way of
time-evolution of the natural orbitals resulting from a time-
dependent electronic wave function such as SET and PSANB is
quite interesting. In general, they are complex-valued, and
through this the state-mixing is well realized, as actually shown
later in this subsection. The first-order spin-free density matrix for
an (instantaneous) electronic wave function Φ(t) is defined as

Fðr, r0, tÞ � N
Z

dω1dq2:::dqN Φ�ðr0,ω1, r2,ω2, :::, rN ,ωNÞ

�Φðr,ω1, r2,ω2, :::, rN ,ωNÞ ¼ ∑
μ, ν

FμνðtÞ χμðr0Þ χνðrÞ

ð127Þ
where ri andωi are the spatial and spin coordinates, respectively,
of the ith electron. Here,

R
dqi is a short-hand notation for spatial

integration and spin summation. χμ are basis functions such as
atomic orbitals, which are chosen to be real functions. The
natural orbitals in electron dynamics can become complex and
are given as eigenfunctions of the matrix Fμν such that

∑
ν
Fμνξ

ðλÞ
ν ¼ nðλÞξðλÞν ð128Þ

where ξμ
(λ) is the λth eigenvector of Fμν with a real eigenvalue

(occupation number) n(λ), giving rise to a natural orbital

ϕλðrÞ ¼ ∑
ν
ξðλÞν χνðrÞ ð129Þ
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Equation 128 does not determine the phase of the natural orbital.
Therefore we simply to fix the phase factor so that the real part of
ξ has the largest norm.

5.2. Nonadiabatic Electron Migration in a Model Water
Cluster Anion System

In the first instance let us consider the dynamics of hydrated
electrons in water clusters in the context of the approximation
level of the semiclassical Ehrenfest theory (SET). The purpose of
this subsection is to show how useful nonadiabatic electron
wavepacket dynamics can be. Electron hydration is quite an
interesting and important issue, and many experimental and
theoretical studies have already been devoted to the issue.173�182

It is a prototype of solution-phase chemistry in a polar solvent.
Also, the dynamics are expected to provide an important insight
into charge-transfer chemistry.

Static structural calculations for the water cluster anion have
revealed the quantum mechanical origin of the binding force for
the excess electron and various equilibrium structures.183�187 It
is now established that the excess electron is bound principally by
the dipole field formed by the water molecules. In their elaborate
studies on the potential landscape of anion water clusters, Choi
and Jordan187 explored a large number of local minima as well as
the transition states on the potential energy surface of (H2O)6

�.
They identified the minimal energy pathway from the neutral
isomer to low-energy anion isomers.

With respect to the dynamical properties of the hydrated
electron in cluster systems, the first principle dynamics using ab
initio molecular dynamics and so on have been extensively
applied.188�192 They revealed information about the structure
and relative stabilities of the isomer clusters. Nonadiabatic
dynamics of a solvated electron in various photochemical pro-
cesses has also been studied experimentally.182,193�195 Rossky
and co-workers196,197 also studied the relaxation dynamics of
excess electrons using quantum molecular dynamics simulation
techniques. Here the nonadiabatic interactions were taken into
account basically within the scheme of the surface hopping
technique.116

On the other hand, there are very few studies available on
nonadiabatic dynamics in cluster deformation dynamics. We
expect that, in the course of cluster deformation and the
accompanying change in electronic orbitals, the nonadiabatic
transition may in fact play a critical role. The dynamics of the
hydrated electron in a water cluster anion consist of two or three
molecules. The electronic structure of such a small cluster,
however, is known to have a very small energy scale (the vertical
detachment energy (VDE) is of order 101 to 102 meV184,198).
Furthermore, it is known that the accuracy of the theoretically
calculated energy levels sensitively depends on the choice of the
size and quality of the basis functions. On the other hand, the
SET calculations that will be shown in this section are so much
limited by the computational capacity available to us that the
results are not necessarily accurate enough to be predictive at a
quantitative level. In addition, the present SET does not quantize
the nuclear vibrational and rotational modes, which may be
delicately coupled with the densely degenerated electronic states.
In spite of these limitations, SET calculations are performed
because it is expected that they can give a qualitative view of the
nonadiabatic migration of the excess electrons within the model
water clusters.
5.2.1. Computational Details in the Nonadiabatic Dy-

namics of a Hydrated Electron. 5.2.1.1. Electronic States.

Our dynamical simulation with SET is implemented into the
GAMESS package.199 The basis functions used were those of the
TZV basis set,200 to which an s-type diffusion base and two sets of
p-type polarization functions were added on hydrogen atoms
while s- and p-type diffusion functions were augmented on
oxygen atoms. (The exponent is 0.03600 for the s-type diffusion
base, 0.08450 for the s- and p-type diffusion bases, respectively,
and 2.00 and 0.50 for the p-type polarization bases.) The total
number of (contracted) basis functions is 38 for each water
molecule. We admit that the size of the basis set is considerably
smaller than that adopted in previous studies on static electronic
structure calculations,184 and therefore, the computational re-
sults will not necessarily be accurate at the quantitative level.
The electronic states and the relevant matrix elements have

been determined using the restricted open-shell Hartree�Fock
(ROHF) method,201 followed by a configuration interaction
(CI) calculation with double excitations. The active space is
limited to 10 molecular orbitals (MO), consisting of 2 occupied,
1 singly occupied, and 7 unoccupied MOs. Excitations to the
higher MOs are neglected. The total number of configuration
state functions (CSFs) in the active space amounts to 479.
5.2.1.2. Static Properties of Dimer Anion (H2O)2

�.We here
study (H2O)n with monomer number n = 2 (dimer) and n = 3
(trimer). These clusters are known to have a couple of locally
stable structures.184 In this study, we will focus on two distinct
equilibrium structures of water anion dimers as shown in
Figure 3. The structures shown here are stable within the
accuracy of our calculation, whereas previous calculations with
a larger basis set indicate different structures. The planar
structure is close to “C2h” in ref 184. According to the calcula-
tions using a larger basis set, this was not in fact an equilibrium
structure. Nevertheless, this planar structure is still of interest
because the binding mechanism of the excess electron is clearly
different from that of the nonplanar structure. In addition, other
water molecules surrounding the excess electron with their
electronic dipole momenta pointing inward may stabilize the
planar structure in larger systems. Indeed, it is also argued that
related types of binding structures may exist in larger clusters
and/or in the presence of other ions.183 Therefore, the small
cluster under investigation may be regarded as a model sub-
system being sampled out of a larger cluster.
5.2.1.3. Electronic Propagation. The initial conditions for

SET dynamics were chosen as follows. Let us consider a system
with three water monomers with an excess electron: one dimer
anion plus one neutral molecule at the beginning. The first two
monomers (m1 and m2) are placed in the configuration of the
planar anion dimer. The other monomer (m3) is set to approach
the dimer from a distance in such amanner that m3�m2 eventually
forms the nonplanar anion configuration (see Figure 4). This

Figure 3. Equilibrium structures of water�anion dimers. Here and
throughout this section, small gray circles indicate hydrogen atoms while
large blue circles indicate oxygen atoms. Left dimer: nonplanar config-
uration. Atoms in the left monomer and the oxygen atom in the right
monomer are on a single plane while the two hydrogen atoms in the right
monomer are out of the plane. Right: planar configuration. All the atoms
reside in a single plane.
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arrangement was chosen with the expectation that electron
migration is possibly more favorable than other random orienta-
tions. We also examined other collision geometries that are not
explicitly shown here. The relative translational velocity given to
the colliding monomer (m3 in Figure 4) is set to 0.17 Bohr/fs.
Although this translational velocity is large, in the sense that the
corresponding energy ismuch larger than the VDE predicted by a
more accurate calculation such as in ref 184, it does not directly
affect the binding structure, since it is a translational energy.
Rather, a velocity of this magnitude is required to finish the
calculations within a realistic time. The vibrational modes are
then determined using the standard mode analysis on the
equilibrium structures of the dimer and monomer. Each vibrational
mode is treated approximately as an independent classical harmonic
oscillator. Each oscillator is given an energy equal to the zero-
point energy with a randomly chosen phase. We prepared a set of
initial conditions scanning only the phases, which gives rise to
about 30 collision paths in total, in order to confirm that the
qualitative conclusions drawn are not pathological. No statistical
sampling is taken with a view to calculating the average rate.
Finally, the time steps for integrating the coupled equations for
SET are set to 0.125 and 0.005 fs for nuclear and electronic
dynamics, respectively. It was confirmed that finer time steps did
not change the results qualitatively.
5.2.2. Nonadiabatic Migration of the Hydrated Elec-

tron. As a result of our SET simulation, basically two types of
migration mechanisms for the excess electron were identified.
One is what can be called the adiabatic migration, which is driven
simply by the adiabatic change of the total electronic state. It has a
rather long migration time scale reflecting the time scale of
cluster deformation. Adiabatic electron migration has already
been thoroughly studied by Tachikawa188 and Head-Gordon.189

Hence, here we will consider the nonadiabatic mechanism in
depth from the analysis of the collision shown in Figure 4.
To demonstrate that this collision really induces nonadiabatic

electron transfer, we expand the electronic wavepacket of SET in
the adiabatic electronic states at each nuclear configuration and,
thereby, attain the state population for the relevant adiabatic
states. Figure 5 shows such population dynamics for the ground,
the first excited, and the second excited state configurations. It is
clearly observed that the interchange between the ground and the
first excited states took place two times in between 10 and 15 fs. A
large fluctuation in the state populations follows after that. In this
graph, two characteristic time scales are observed: one with a
period as short as about 8 fs, whereas the large amplitude component

of the period can be as long as about 20 fs. The shorter time
period is almost the same as that of the antisymmetric
stretching mode of a water monomer. The longer time scale
will be addressed below.
To see how the electronic states change nonadiabatically, a

comparison of the SOMO, the LUMO, and the singly occupied
natural orbital (SONO) is useful, as shown in Figure 6. Here, the
SONO is defined as the natural orbital whose occupation number is
closest to unity. As we mentioned above, natural orbitals are in
general complex-valued (see eqs 128 and 129). In these figures
we observe a characteristic change in the phase of SONO. Let us
track the shape of the SOMO, the LUMO, and the real part of
SONO as shown in Figure 6 and see the deformation in the

Figure 4. Configuration of collision between the planar dimer anion
consisting of m1 and m2 and a water monomer m3. Figure 5. Time-dependent behavior of the adiabatic state populations

during the collision of a water dimer anion and a water monomer as
shown in Figure 4. The red solid line, green dashed line, and blue dotted
line represent the ground, first excited, and second excited states,
respectively. Changes in the populations of these states indicate non-
adiabatic transitions.

Figure 6. Selected snapshots of the spatial distribution of the SOMO
(upper row), the LUMO (middle row), and the real part of the SONO
(bottom row) during the collision of a water dimer anion and a water
monomer. Green and red surfaces indicate the isocontour surfaces of the
electronic orbitals at the amplitudes +0.01 Bohr�3/2 and�0.01 Bohr�3/2,
respectively. Water molecules are indicated as a pair of black thin lines,
each representing an OH bond. From left to right, times are t = 0.25, t =
10.50, and t = 20.50 (in units of fs). Although either the SOMO or the
LUMO do not change their characters during the reaction, the SONO
changes significantly.
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electron migration. It is clear that the topology of either the
SOMO or the LUMO does not appreciably change during the
course of the collision, whereas that of the SONO changes
significantly. This is obviously due to a mixing of the SOMO and
LUMO. It should also be noted that the occupation number of
the SONO remains very close to unity. Thus, it is in the smooth
change in the shape of the SONO that the electron-dynamical
effect of the nonadiabatic transition manifests itself most clearly.
5.2.3. Nuclear Motion Inducing Nonadiabatic Transi-

tions. We next study the geometrical aspects of the observed
nonadiabatic transition. The observed nonadiabatic transitions
originate from the matrix element of the nonadiabatic coupling
operator p _R 3X between the two adiabatic states: |Ψg(R(t))æ and
|Ψ1(R(t))æ (see eq 46). It is therefore pertinent, in the first instance,
to study a spatial vector of pXg1 � pÆΨg(R(t))|X̂|Ψ1(R(t))æ.
Since the nonadiabatic coupling element p _R 3X is an inner
product between the nuclear velocity vector _R and the coupling
element vector pXg1, nuclear modes that are parallel to the latter
vector should strongly enhance the nonadiabatic transition.
For the adiabatic functions expanded in the CSF basis set as

|Ψαæ = ∑ICα,I|ΦIæ, the nonadiabatic coupling is decomposed into

ÆΨαðRÞ
����� ∂

∂Rμ

�����ΨβðRÞæ ¼ ∑
I, J

C�
α, JX

μ
JICβ, I þ ∑

I
C�
α, J

∂

∂Rμ
Cβ, I

ð130Þ
Therefore, even if the transition through the above elements of
XIJ
μ is set to zero, the left-hand side is not necessarily reduced to

zero, because of the presence of the last term. In Figure 7, we plot
the first term on the right-hand side of eq 130 times p, redefined
below more explicitly

p~Xg1 � p ∑
I, J

C�
gJXJIC1I ð131Þ

where CgJ � ÆΨg(R)|ΦJ(R)æ and C1I � ÆΨ1(R)|ΦI(R)æ. It is
immediately clear from this figure that p~Xg1 strongly couples to
the OH antisymmetric stretching mode of the water dimer.
The nonadiabatic coupling term p _R 3Xg1 undergoes a rapid

oscillation mainly due to the fast oscillatory motion of the nuclei.
Its angular frequency has a value around 0.0017 in atomic units,
which clearly reflects the frequency of the OH antisymmetric
stretching (as) mode,ωas in dimer anions:ωas/2π∼ 3700 cm�1.
As a result, both the spatial distribution of p~Xg1 and the time
series of p _R 3 ÆΨg(R)|X̂|Ψ1(R)æ strongly suggest that the OH

antisymmetric stretching motion should trigger the nonadiabatic
migration of the hydrated electron.
5.2.4. Isotope Effects. The present electron migration is

heavily dependent on the nonadiabatic coupling elements, which
is in turn a function of the nuclear (reduced) masses. Therefore,
it is readily anticipated that the migration should be significantly
affected by exchanging the protons by deuterons. Indeed it is the
case, as we will exemplify below. We track the dynamics of such
isotope effects by choosing the same initial configuration, orienta-
tion, and kinetic energies as those in Figures 4 and 5. The results
in Figure 8 clearly show a significant suppression in nonadiabatic
transitions. To see it more clearly, in Figure 9 we show the
snapshots of the SOMO, LUMO, and SONO for this collision at
selected instances. It is obvious that neither the SOMO or
LUMO is affected by deuterium substitution, whereas the SONO
most definitely is (compare with Figure 6). This highlights one of
the crucial differences between the SET calculations and ab initio
MD type (or CI type) static calculations, in which virtually no
change in electronic properties is expected to be induced by
deuterium substitution. As seen in the figure, the SONO in the
current case is quite similar to the SOMO. This clearly illustrates
that the SOMO and LUMO do not mix much into the SONO
(compare again with the SONO in Figure 6).
5.2.5. Origin of the Longer Time Scale. Finally we survey

the origin of the longer time scale, around 20 fs, as found in Figure 5.
This is directly responsible for the time scale of the gross electronic
transition. In other words, it is a characteristic time scale for a
vibration-electron coupled mode. To see this more clearly, we must
first reduce the original system into a simplified model. We need
only two electronic states, since the state population transfer occurs
predominantly between the ground |Ψg(Rt)æ and the first excited
electronic states, |Ψ1(Rt)æ. If we expand the electronic wavepacket
only in two states as |Ψ(t)æ = Cg(t)|Ψg(Rt)æ + C1(t)|Ψ1(Rt)æ,
we obtain the nonadiabatic time evolution equation as

ip
∂

∂t

Cg

C1

 !
¼ Eg �ip _R 3Xg1

�ip _R 3X1g E1

 !
Cg

C1

 !

ð132Þ

Figure 7. Approximate nonadiabatic coupling vector ~Xg1 (see the text
for the definition) at t = 18.625 fs, at which the nonadiabatic coupling
term reaches its maximum value in the collision of a water dimer anion
and a water monomer. Although the vectors are time-dependent, their
spatial orientations change only minimally during the periods of the
vibration motions.

Figure 8. Time-dependent behavior of the adiabatic state populations
during the collision of fully deuterizedmolecules (water dimer anion and
water monomer). The electronic state populations in the adiabatic basis
are shown. The red solid line, green dashed line, and blue dotted line
represent that of the ground, first excited, and second excited states,
respectively. The time evolution of the ground state population obtained
from the corresponding calculation with undeuterized molecules is also
plotted with thin black dotted lines for comparison (see Figure 5).
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where Eg and E1 are the energies of the ground and the first
excited state, respectively. We next approximate the contribution
of nuclear motion to a single oscillation mode (actually the OH
antisymmetric stretching mode as indicated above) as

p _R 3Xg1 ¼ pAas cosðωastÞεas 3Xg1

¼ V 0
g1ðeiωast þ e�iωastÞ ð133Þ

where ωas, εas, and Aas are the angular frequency, the direction,
and the velocity amplitude of the asymmetric stretching mode,
respectively. Here Vg1

0 � 1/2pAasεasXg1 is half of the oscillation
amplitude of the matrix element p _RXg1. The time evolution
equation eq 132 is then essentially equivalent to the Rabi
oscillation model. An approximate solution is then obtained
using the rotating wave approximation. The upper state popula-
tion oscillates as

jC1j2 ¼ 4jV 0
1g j2

ðE1 � Eg � pωasÞ2 þ 4jV 0
1g j2

sin2ðλtÞ

where λ is defined as

λ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV 0

g1j2 þ E1 � pωas � Eg
2

 !2vuut

Thus, the characteristic time scale of the electronic state
oscillation is 2π/λ, which is different from either the electronic
time scale 2πp/(E1 � Eg) or the nuclear oscillation time scale
2π/ωas. Our model prediction of 2π/λ using the quantities
obtained in the current calculations roughly agrees with the
observed time scale 20 fs. Again, it should be noted, however, that
the quantitative accuracy is limited due to the rather small basis

set. Nonetheless, we expect that the underlying mechanism of
nonadiabatic dynamics may apply to larger calculations.
5.2.6. Summary.As illustrated above, nonadiabatic dynamics

exhibits vividly how electrons move in and between molecules.
Complex natural orbitals, in particular the SONO in the present
case, clearly illustrate how the electronic wave function evolves in
time. In addition to the time scale, the driving mechanism for the
electron migration has also been illustrated. By clarifying such
complex electron behavior, not available using stationary-state
quantum chemistry, our understanding of realistic chemical
reactions is greatly enhanced. As a result, it has clearly been
shown that nonadiabatic electron wavepacket theory is invalu-
able in the analysis of nonrigid and mobile electronic states of
molecular systems.

5.3. Role of Nonadiabaticity in Chemical Dynamics under
Intense Laser Fields

We next show a couple of numerical examples of how
electronic nonadiabaticity in chemical reaction dynamics can
be modulated by laser fields. Even in a case with medium intense
laser field, the interaction of the field and nuclear derivative
coupling (NDC) of the electronic state affects the dynamics in a
qualitative level.82,151 More precisely, we observe that the pre-
sence of nonadiabatic coupling can alter the channels of reaction
more than the relevant case without a nuclear derivative coupling
element. Toward a goal of control of chemical reactions through
modulation or creation of electronic states in terms of laser fields,
we here briefly survey some general responses of selected
molecules to pulse lasers through ab initio calculations of
electronic wavepackets. The computational level here is only
qualitative without pursuit of numerical accuracy, and we use
the semiclassical Ehrenfest theory with laser fields throughout
this subsection.

Path branching due to nonadiabatic interaction, electromag-
netic fields by lasers, and their coexistence are presented with the
PSANB scheme in ref 157.
5.3.1. Methyl Alcohol as an Example. Our first system to

be examined is CH3OH. Figure 10 highlights the role of NDC in
chemical dynamics under the influence of different types of laser
field.Ab initio calculations were carried out using the configuration
interaction with a single excitation (CIS)/restricted Hartree�
Fock (RHF)/6-31G(d) level. The frozen core orbitals were the
two 1s orbitals of C andO. The startingmolecular structure is set to
the optimized geometry for the electronic ground state. The
schematic view along with the coordinate system used are
depicted in panel a of Figure 10. In all these computations
represented in Figure 10, the initial electronic states are set to the
first adiabatic excited state in the singlet manifold. The initial
momenta of the nuclei are set at zero. In panels b and c, the time
progressions of the CO and OH bond lengths under two
different laser fields are depicted. In each system, two cases are
compared, one with the proper NDC and the other where NDC
is intensionally neglected. Due to the single occupation of the
antibonding orbital for this initial condition, OH bond tends to
cleavage in the case without a laser field. This is well illustrated by
the blue dotted lines on the right side panels of parts b and c.
Panel b in Figure 8 shows the dynamical responses to a static

linear electronic field (cw laser), whose field strength Es is as
weak as 0.005 au; this corresponds to an intensity 8.75 � 1011

W/cm2. The direction of the electric field is along the y axis,
which is approximately equivalent to the initial direction of the
CO bond line. On the other hand, panel c in Figure 10 shows the

Figure 9. Selected snapshots of the spatial distribution of the SOMO
(upper row), the LUMO (middle row), and the real part of the SONO
(bottom row) for the collision of fully deuterized molecules (water
dimer anion and water monomer). Green and red surfaces indicate the
isocontour surfaces of the electronic orbitals at the amplitudes +0.01
Bohr�(3)/(2) and�0.01 Bohr�(3)/(2), respectively. Water molecules are
indicated as a pair of black thin lines, each representing an OH bond.
From left to right, times are t = 0.25, t = 19.00, and t = 40.00 (in units of
fs). This figure should be compared to the undeuterized counterpart
(Figure 6).



527 dx.doi.org/10.1021/cr200096s |Chem. Rev. 2012, 112, 499–542

Chemical Reviews REVIEW

case for the strong laser pulse field. The radiation vector field
A(t), as a function of time, is constructed in the form of

AðtÞ ¼ As exp � t � tc
tw

� �2 !
sinðωðt � tcÞÞ 3 û ð134Þ

whereAs = cEs/ω, with Es being the electronic field strength and c
the velocity of light. A unit vector û denotes a polarization
direction of the radiation field. The corresponding electric field is
given by E(t) = �(1/c)(dA(t)/dt). The field direction is the
same as that in Figure 10 panel b, but the field strength is set to
Es = 0.1, with the corresponding intensity 3.5� 1014 W/cm2. The

pulse parameters applied are as follows: central field frequency
ω = 0.057, duration time width tw = 2.42 fs, and central peak time
tc = 4.84 fs. Note that the period corresponding toω is 2.66 fs and
that this is sufficiently long compared to the electronic motion
but short enough with respect to the typical period of molecular
vibrational motion.
In Figure 10 panels b and c, we immediately notice that the

applied laser fields along the y axis significantly suppress the
cleavage of the OH bond for both static and pulse lasers,
respectively. Instead, the pulse laser in Figure 10 left (c) prolongs
the CO bond dissociation, while the static field does not enhance
the CO dissociation as in panel b left. The result is that the lasers
have totally altered the channel of chemical reaction.
It is also well recognized that NDC can bring about a

qualitative effect on the CO bond length in the dynamics of a
static laser field. If we neglect the NDC in the semiclassical
Ehrenfest theory, the result is CO bond dissociation. On the
other hand, this is not the case in the presence of NDC (see left
panel of Figure 10c). In the case of the pulse laser, the effect of
NDC on the CO bond length only occurs at a quantitative level.
5.3.2. Example of Hydroxylamine. In Figure 11 we illus-

trate the role of NDC in the case of the electronic excited
dynamics of NH2OH under the influence of external laser fields.
The same notations are used as described above for methyl
alcohol. Ab initio calculations were performed within the CIS/
RHF/6-31G(d) level. The frozen core orbitals were the two 1s
orbitals of N and O. The initial electronic state was set as the
second excited state in the singlet manifold. This state has a
strong interaction with the first excited state in the early stage of
dynamical relaxation starting from the optimized geometry at
groundelectronic states.We, therefore, chose the optimizedgeometry
at electronic ground state as the initial molecular geometry. The
structure is drawn in Figure 10 panel a. We set the initial
momenta to zero. The dynamical relaxation in the absence of a
laser field under this initial condition is characterized by the NO
cleavage within tens of femtoseconds. This is well illustrated by
the red circles in the far left box of panel b in Figure 10.
Panel b in Figure 10 presents the time dependence of NO (left

panel), terminal OH lengths (central panel), and the HNH angle
(right panel) under the static laser fields of the field strength Es =
0.005 au. The polarization vectors of the resultant electric field lie
on the x, y, and z axes. Only in the case of the x-directed field, is a
stronger laser of Es = 0.01 au applied. In addition, the dynamics in
the absence of laser fields is also shown. As seen in the figure, the
laser field polarized along the y axis gives rise to the most drastic
reduction in the NO cleavage accompanied by the enlargement
of the HNH angle. The increase in the bond length of NO is
almost one-half within 7 fs as a result of the presence of the
electric field in the y-direction. On the other hand, the laser in
the z-direction leads to a moderate elongation of the OH bond.
More importantly, this is accompanied by a slight suppression of
the NO bond cleavage. This indicates the rearrangement of bond
breaking from NO to OH.
To closely examine the role of NDC on the rearrangement of

the reaction pathway under these particular laser conditions, it is
necessary to compare the dynamics between the two cases,
namely with and without NDC in the z-polarized field in panel
c. The significant OH enlargement is observed only in the case
without NDC. We also find that a suppression of NO cleavage is
weakened by NDC. This suggests that NDC within the CSF
representation plays a key role in the suppression of dynamical
energy transfer by lasers from electrons to nuclei subsystems.

Figure 10. Role of nuclear derivative coupling (NDC) in dynamics
under static (cw) and pulse lasers (in panels b and c, respectively). The
system examined is CH3OH, starting from the first electronic excited
state with the initial geometry (panel a) set at the optimized structure in
the electronic ground state. In both panels b and c, the progression of the
CO and OH bond lengths is plotted under different conditions. The
letter “L” in the panels indicates the cases with a laser field, while NF
denotes the case in the absence of a laser field. “W” and “WO NDC”,
respectively, represent the cases with and without the NDC term in the
electron wavepacket dynamics. In the case of application of a laser, the
results are shown in red solid lines and open circles, respectively.
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Hopefully, these numerical studies have served as an illu-
strative presentation of the basic methodology of electron
wavepacket dynamics for the study of the laser modulation of
chemical reactions. This is just a preliminary step toward
the ultimate design of laser fields that will in fact be capable
of controlling chemical reactions with a view to yielding our
target molecules.

5.4. Electron Wavepacket Dynamics across Conical Inter-
sections

A conical intersection is a continuous manifold of molecular
geometry, for which the two or more adiabatic potential energy
surfaces degenerate in energy and the nonadiabatic coupling
elements within them are divergent.15,202 In the diabatic repre-
sentation of a two-state system, a conical intersection satisfies the

following equation

Hel
11ðRÞ ¼ Hel

22ðRÞ and Hel
12ðRÞ ¼ 0 ð135Þ

thereby forming a 3N � 8 dimensional manifold in the R space.
This particular nonadiabatic region is characterized in terms of a
very rapid electronic relaxation in photochemical reactions.203 As
mentioned in section 1.3, the passage of a wavepacket across a
conical intersection can be experimentally observed49,50,52 and
optically controlled.51

The importance of a conical intersection in chemical reactions
has been revealed by great progress in the field of quantum
chemistry for electronic excited states.15,202 In particular, the
elaboration in ab initio methods for correlated electronic wave
functions has made a significant contribution. Of note among

Figure 11. Dynamics of NH2OH under static laser fields of three different polarizations in the x, y, and z directions, denoted respectively as Px, Py, and
Pz. The field strength Es is 0.005 au, cooresponding to the intensity 8.75 � 1011 (W/cm2). Panel a shows the initial structure of the molecule. Panel b
presents the dynamics of the bond lengths of NO andOH and the HNH angle in cases of no laser field (NF) and under the presence of static laser fields.
Nuclear derivative couplings are fully taken into account. Panel c compares the structure dynamics with and without NDC, which are represented by
points and lines, respectively. Only the results for Pz are shown.



529 dx.doi.org/10.1021/cr200096s |Chem. Rev. 2012, 112, 499–542

Chemical Reviews REVIEW

these methods are the following: multireference configuration
interaction (MRCI),204 multistate multiconfigurational second-
order perturbation (MS-CASPT2),205 and symmetric-adapted-
cluster configuration interaction (SAC-CI).206

In addition, it should be mentioned that progress in the theory
of excited states and in time dependent density functional theory
played an important role.207 For the state coupling matrix
elements, see refs 208�211, and for the study of larger systems,
readers are referred to refs 212 and 213. However, because the
study of the conical intersection with electron wavepacket dynamics
is quite rare, we therefore explore it below with PSANB. Electron
dynamics involved in conical intersection constitutes a key factor
for the further elucidation of electronic relaxation phenomena
accompanied by structural change triggered by photoexcitation
and electron attachment to and detachment from molecules.

An adiabatic representation generally fails in describing non-
adiabatic dynamics at a conical intersection because of the
divergent nature of the relevant nonadiabatic coupling elements,
and therefore good and effective diabatic representations have
been devised.16,214,215 The CSF basis turns out to provide a
rather good approximation to the diabatic representation, which
has been successfully employed in studies on electron dynamics
within the semiclassical Ehrenfest theory.82,99,100,124,129,151,156

On the other hand, there are studies on construction of effec-
tive adiabatic surfaces that include the effect of a geometrical
phase around the singular point and on their application to
realistic chemical reactions as a part of quantum scattering
phenomena.104,216,217

One of the most interesting features of conical intersection is a
curious phase, first discovered by Herzberg and Longuet-
Higgins.102 By examining the Teller first order model in the
vicinity of a conical intersection point, they showed that an
adiabatic electronic wave function, guided by adiabatic param-
eters such as a smooth nuclear path, accumulates a quantum
phase as much as π while it makes a single circuit around this
point.102 In this article, therefore, we collectively name the phases
arising from the relevant phenomena “the Longuet-Higgins
phase”. This phase was rediscovered in the general study of level
repulsion in chaotic dynamics by Berry; it is now called the Berry
phase.103 However, it was Mead who first studied and pointed
out the theoretical similarity of the Longuet-Higgins phase to the
Aharonov-Bohm effect.104,105 Later, Mukunda and Simons es-
tablished its common mathematical foundation for a geometric
phase in terms of anholonomy in fiber bundle theory.218 The
effects of the Longuet-Higgins phase on chemical dynamics have
been discussed extensively in conjunction with quantum scatter-
ing phenomena15,104,216,217,219�223 and vibronic spectroscopy in
aNa3 system,whichwas examined theoretically byKendrick.

224�227

In a control theory of chemical reactions, Domcke et al. examined
the effect of phase on a photodissociation branching ratio of
phenol.167 The geometric phase is critically important, not only
inmolecular science, but also in solid state physics; for instance, it
is claimed that the quantum hole effect in quantum transport is
related to the geometric phase.228,229

In this subsection, we will present a multidimensional
extension of the PSANB method. Using it we analyze a
generally complicated quantum interference phenomenon
associated with the electron�nuclear simultaneous dynamics
around a conical intersection in a rather qualitative manner.
We examine how appropriately the path branching can de-
scribe not only the geometric phase but also the resultant
quantum interference.

5.4.1. Longuet-Higgins Phase. Let us now briefly review
the original work by Herzberg and Longuet-Higgins, since it is
not only instructive but also pertinent to our argument. They
considered a two-state model Hamiltonian in a diabatic repre-
sentation with two variables x and y,

H ¼ H11 H12

H21 H22

 !

¼ W þ ðm þ kÞx ly
ly W þ ðm� kÞx

 !
, k 6¼ 0

ð136Þ
where l, m, and k are the parameters used to control the system
and its interactions. The two eigenvalues are readily found as

E( ¼ W þ mx (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x2 þ l2y2

p
ð137Þ

Since a conical intersection point is defined so as to satisfy E+ =
E�, it is located at (x0,y0) = (0,0). It should be noted that the
coupling element H12 = H21 changes its sign by y f �y. To
examine the x�y dependency of the adiabatic wave functions
around this singular point, they introduced a polar representation
as R = (k2x2 + l2y2)1/2 and θ = arctan(y/x). Then, since the lower
state wave function, |ϕæ = C1

L|1æ + C2
L|2æ, satisfies

CL
1ðθÞ

CL
2ðθÞ

0
@

1
A ¼ expðiαÞ

þ sin
θ

2

�cos
θ

2

0
BBB@

1
CCCA ð138Þ

with an arbitrary real value α, this immediately leads to

CL
1ðθ þ 2πÞ

CL
2ðθ þ 2πÞ

 !
¼ � CL

1ðθÞ
CL
2ðθÞ

 !
and

CL
1ðθ þ 4πÞ

CL
2ðθ þ 4πÞ

 !
¼ þ CL

1ðθÞ
CL
2ðθÞ

 !
ð139Þ

Thus, an electron wavepacket obtains a phase π during a single
circuit.
Then, let us consider two paths in configuration space, one of

which makes a circuit in a clockwise manner and the other of
which is counterclockwise. We also suppose that they are both
symmetric with respect to the inversion yT�y, and one moves
from θ = 0fπ/2fπ and the other from θ= 0f�π/2f�π.
Then, if we track the two paths starting from the same point
(R,θ) with the same phase, they meet again at a confluence point
(R,θ + π) = (R,θ� π), where the following equation is satisfied
such that

CL:p1
1 ðθ þ πÞ

CL:p1
2 ðθ þ πÞ

0
@

1
A ¼ expðiαÞ

þ cos
θ

2

�sin
θ

2

0
BBB@

1
CCCA and

CL:p2
1 ðθ� πÞ

CL:p2
2 ðθ� πÞ

0
@

1
A ¼ expðiαÞ

�cos
θ

2

þ sin
θ

2

0
BB@

1
CCA ð140Þ

This completes the proof.
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5.4.2. Present System To Be Studied.We then study how
the non-Born�Oppenheimer paths in the PSANB theory can
materialize the effect of the geometrical phase by employing the
same model functions as recently used in the work of the optimal
Gaussian spawning scheme by Martinez’s group.118 Their model
is related to the one proposed in the paper by Ferretti et al.230 A
model similar to this has also been used by Kapral et al. in a study
of the environmental effect on the electron dynamics around a
conical intersection.231 The diabatic potential energies V11, V22

and coupling matrix elements V12 are depicted in Figure 12. The
potential functions of diabatic states #1 and #2 are defined as

V11 ¼ 1
2
kxðx1 � Xc1Þ2 þ 1

2
kyx

2
2 ð141Þ

V22 ¼ 1
2
kxðx1 � Xc2Þ2 þ 1

2
kyx

2
2 þ Δ ð142Þ

respectively. The state coupling matrix element is given by

V12 ¼ γx2 expð � αðx1 � Xc3Þ2 � βx22Þ ð143Þ
Here, the parameters are set to Xc1 = 4, Xc2 = 3, Xc3 = 3, kx = 0.01,
ky = 0.1, Δ = 0.01, α = 3, β = 1.5, and γ = 0.01. The masses
associated with the x1 and x2 coordinates are set to 20000 and
6667 in atomic units, respectively. Note that the point (x1,x2) =
(2.5,0) provides the degenerate adiabatic energies. The key
feature of this system is that the diabatic coupling matrix has
two maxima in their absolute values, each having the opposite
signs in a symmetric position with respect to the x2 axis, thereby
leading to a node along this axis. The profiles of the system
functions are presented in Figure 12, in which the existence of the
conical intersection point is clearly recognized.
We here note the symmetry of this system. Let us consider a

situation in which the initial wavepacket on a single electronic
state has a symmetric shape in position and momentum space
with respect to the x2 axis and the correspondingmomentum axis
as well. We also suppose that this initial wave function is placed at
a region where no state coupling is present. Then, by looking at
Figure 12 we immediately notice that the fate of this wave
function cannot be represented in terms of a single nuclear path,
because the coupling magnitude along this path retaining sym-
metry is zero all the way. Thus, we have to think about a
symmetric pair of paths, both of which start from a distribution
function that represents the initial wave function. Such a method
has previously been established,157 in which the Monte Carlo
importance sampling was employed.

In the following discussion we consistently adopt the diabatic
representation because the nuclear derivative coupling elements
diverge in the adiabatic representation.
5.4.3. Electronic Phase on non-Born�Oppenheimer

Paths. Let us now consider in more precise detail the electronic
phase arising from the path branching around the conical
intersection. For simplicity, let us assume that the initial electro-
nic state is state #1. According to PSANB theory, the electron
wavepacket at t, slightly after a single branch at t* (but before the
next branch), is expressed as a specific form of eq 83

jΨ1ðtÞæ
jΨ2ðtÞæ

 !

¼ C1
1ðt � t�Þ C1ðt�ÞjΦ1ðR1ðtÞÞæ þ C2

1ðt � t�Þ C2ðt�ÞjΦ1ðR2ðtÞÞæ
C1
2ðt � t�Þ C1ðt�ÞjΦ2ðR1ðtÞÞæ þ C2

2ðt � t�Þ C2ðt�ÞjΦ2ðR2ðtÞÞæ

 !

ð144Þ

where CK(t*) is the K-th state electronic amplitude at the branch
time t* and CK(0) = δ1K. Additionally, at time t later than t*,
CK
1 (t� t*) andCK

2 (t� t*) are theK-th state electronic amplitudes
on a branching path running dominantly on states #1 and #2,
respectively.ΨK andΦK correspondingly denote the K-th time-
dependent component and K-th electronic states while RI

denotes a PSANB path running predominantly on the I-th state.
It should be noted that the state vector on the left-hand side
provides a formal description of the total electronic wave
function from the electron dynamics point of view. The branch-
ing paths restart from the branching point as initial conditions
with CK

1 (0) = δ1K and CK
2 (0) = δ2K, respectively. The product

form appearing in these amplitudes ensures that electronic
coherence along the paths is retained.
5.4.4. Parity Conservation of the Electronic Phase

along Paired Symmetric Paths. The potential function in
the two-state electronic Hamiltonian can be split into the
diagonal and off-diagonal parts, respectively, as

V0__ ¼ V11 0
0 V22

 !
and VI__ ¼ 0 vI

vI 0

 !
ð145Þ

with vI � V12 = V21. Also the time dependent electronic-state
coefficients can be written in a vector form as follows

_CðtÞ ¼ C1ðtÞ
C2ðtÞ

 !
ð146Þ

Figure 12. Panel a for the diabatic potentials (V11 and V22 withV12 the coupling function) and panel c for the adiabatic one in the present model system
with a conical intersection. Panel b presents a contour plot of the diabatic potential functions.
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Furthermore, a symmetric pair of PSANB pathsR((t) defined by

R(ðtÞ ¼ ðx1ðtÞ, ( x2ðtÞÞ ð147Þ

can be introduced and the corresponding electron wavepackets
evolving on these paths are referred to C

�
((t). It should be

recalled that the state couplingmatrix elements vI�V12 =V21 are
odd functions with respect to x2. That is,

vIðRþðtÞÞ ¼ � vIðR�ðtÞÞ ð148Þ
while the diagonal potential functions are even functions of x2,

VIIðRþðtÞÞ ¼ VIIðR�ðtÞÞ ð149Þ
where I = 1, 2.
In a PSANB scheme, a single wavepacket component accu-

mulates phases from both electronic and nuclear dynamics in
such a manner as that described in eq 111. First the phases along
the pair of nuclear paths are studied. These phases evolve in time
according to the effective electronic potential Veff

( (t) and
effective nuclear kinetic energies Tnuc

( (t) along paths

SðR ( ðtÞÞ ¼
Z

t

0
dτ ðT (

nuc ðτÞ � V (
eff ðτÞÞ

where

T(
nucðτÞ � ∑ 1, 2

k

ð _R (
k ðτÞÞ2
2Mk

and

V(
eff ðτÞ � fC( ðτÞg†H__ ðR( ðτÞÞC( ðτÞ

with massesMk associated with the coordinate xk. The contribu-
tions of the kinetic energies to the phases from these two
symmetric paths R((t) should be exactly identical.
The phase associated with the electronic state is much more

involved. To survey the symmetric property of the electronic
phases, we must first examine an infinitesimal evolution from t0
to t0 + dt for electron wavepackets C

�
( on a path starting from

their own symmetric conditions. Let us suppose that the electron
wavepackets are running on the first diabatic surface (V11) with
the following initial condition Ck

( (t0) = δk1. Within the first
order expansion with respect to a short time-step dt, the
Schr€odinger equation of the electron wavepacket gives

C(
1 ðt0 þ dtÞ ¼ 1� i

p
V11ðR(ðt0ÞÞ dt,

C(
2 ðt0 þ dtÞ ¼ � i

p
vIðR(ðt0ÞÞ dt ð150Þ

By taking into consideration the relations in eqs 148 and 149, we
know

C(
1 ðt0 þ dtÞ ¼ 1� i

p
V11ðRþðt0ÞÞ dt,

C(
2 ðt0 þ dtÞ ¼ -

i
p
vIðRþðt0ÞÞ dt ð151Þ

which immediately shows

Cþ
1 ðt0 þ dtÞ ¼ þ C�

1 ðt0 þ dtÞ ð152Þ

RefCþ
1 ðt0 þ dtÞg ¼ RefCþ

2 ðt0 þ dtÞg ¼ 0,

ImfCþ
1 ðt0 þ dtÞg ¼ � ImfCþ

2 ðt0 þ dtÞg ð153Þ

It should be noted that these relations satisfy

Cþ
1 ðt0 þ dtÞ ¼ þ C�

1 ðt0 þ dtÞ,
Cþ
2 ðt0 þ dtÞ ¼� C�

2 ðt0 þ dtÞ
¼ expð � iπÞC�

2 ðt0 þ dtÞ ð154Þ
Moreover, the initial condition, Ck

((t0) = δk1 also satisfies

Cþ
1 ðt0Þ ¼ þ C�

1 ðt0Þ,
Cþ
2 ðt0Þ ¼ � C�

2 ðt0Þ ¼ expð � iπÞC�
2 ðt0Þ ð155Þ

Therefore, using these relations as expressed in eq 155, one can
prove a parity conservation

Cþ
1 ðtÞ ¼ þ C�

1 ðtÞ,
Cþ
2 ðtÞ ¼ � C�

2 ðtÞ ¼ expð � iπÞC�
2 ðtÞ ð156Þ

Further, if the relations in eq 156 hold at a time t = τ (gt0), the
electronic wave functions at the time t = τ + dτ on the paired
symmetric paths R((τ + dτ) are rearranged into the following
forms

Cþ
1 ðτ þ dτÞ ¼ 1� i

p
V11ðRþðτÞÞ dτ

� �
Cþ
1 ðτÞ

� i
p
vIðRþðτÞÞ dτ Cþ

2 ðτÞ ¼ 1� i
p
V11ðR�ðτÞÞ dτ

� �
C�
1 ðτÞ

� i
p
ð � vIðR�ðτÞÞÞ dτðe�iπC�

2 ðτÞÞ ¼ C�
1 ðτ þ dτÞ

ð157Þ
and

Cþ
2 ðτ þ dτÞ ¼ 1� i

p
V22ðRþðτÞÞ dτ

� �
Cþ
2 ðτÞ

� i
p
vIðRþðτÞÞ dτ Cþ

1 ðτÞ ¼ 1� i
p
V22ðR�ðτÞÞ dτ

� �
ðe�iπC�

2 ðτÞÞ

� i
p
ð � vIðR�ðτÞÞÞ dτC�

1 ðτÞ ¼ e�iπC�
2 ðτ þ dτÞ ð158Þ

where the system symmetry also plays a critical role. Thus, the
phase relation expressed by eq 156 also holds at t = τ + dτ. This
result assures the preservation of both in-phase and out-of-phase
relations along given paired symmetric paths for all time t g t0.
5.4.5. Parity Conservation of the Mean Forces. Due to

the system symmetry, the force matrix in a diabatic representa-
tion given by FIJ

k = �∂HIJ
el/∂Rk satisfies the following symmetry

relations

F1IIðRþÞ ¼ þ F1IIðR�Þ F2IIðRþÞ ¼ � F2IIðR�Þ
F1IJðRþÞ ¼ � F1IJðR�Þ F2IJðRþÞ ¼ þ F2IJðR�Þ ð159Þ

where I 6¼ J. Consequently, the mean force vectors defined at
R( by fk

MF ( � (C
�
()† F_k

_ C( retain the symmetry properties in
them as

f MFþ
1 ¼ þ f MF�

1 , f MFþ
2 ¼ � f MF�

2 ð160Þ
Thus, the parity is conserved in the mean force. Therefore, the
paths driven by the mean force in the process of phase-space
averaging in the PSANB scheme also preserve the relevant
symmetry.
5.4.6. Parity of Phase in Quantum Dynamics and

Semiclassics. We will now demonstrate a realization of parity
conservation of the electron wavepackets. Here, for clarity, we
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track the dynamics of symmetric initial conditions. This is
possible because other dynamics lacking symmetry can be
fragmented into the symmetric pieces. So, we confirm that we
are thinking of an initial wavepacket lying on a single electronic
state (on V11) which has a symmetric shape in position and
momentum space with respect to the x2 axis. It is also necessary
to assume that this initial wave function is placed at a region
where no state coupling is present. All the quantum dynamics
calculations were carried out with use of the second order split
operator method.232

Again it should be noted that the portion of the wavepacket
amplitude transferred from the first diabatic state to the second
one has odd symmetry due to the antisymmetry of vI, namely,
vI(x1,x2) = �vI(x1, � x2), if starting from an even parity with
respect to the x2 inversion operation. The other portion left in
the first state is even. These symmetry properties play the key
role in the transition dynamics around the conical intersection. In
particular, as already clarified above, the total wavepackets
located at an asymmetric position with respect to the x2 have
mutually different signs. That is

cΦ2ðr;RþðtÞÞ χ2ðRþðtÞ, tÞ ¼ � cΦ2ðr;R�ðtÞÞ χ2ðR�ðtÞ, tÞ
ð161Þ

for t after the passage of the region of the conical intersection,
where χ2(R

+(t),t) [χ2(R
�(t),t)] is the nuclear wavepacket run-

ning on the place of x2 > 0 [x2 < 0] and c is a constant. Thus, the
total wave function on the second diabatic stateV22 should have a
definite nodal line at x2 = 0 starting from the conical intersection.

This is explicitly observed in the quantum nuclear wavepacket
propagating on the second state in panel a of Figure 12 (red
contour lines). On the other hand, the packet remaining on the
first state does not experience such cancellation and concomi-
tantly does not form such a node. (See also the similar nodal
structure in the ab initio dynamics of NO2 around a conical
intersection.50)
We next examine the wavepacket propagation guided by a

symmetric pair of the PSANB non-Born�Oppenheimer path.
These are designed to mimic the condition of the above full
quantum wavepacket dynamics. Here we focus on a Gaussian
wave packet with a center position (x1,x2) = (5.5,0.0) on the first
diabatic state (V11). The initial two phase-space points are
sampled symmetrically with respect to the x2 axis, by using the
Wigner phase-space distribution function for this wavepacket as a
weighting function. Below, we track these paths and their branching
along with the semiclassical wave packets on them. Panel b of
Figure 13 shows the history of this pair of paths in (x1,x2)-space
that undergoes bifurcation (at the bifurcation point as indicated
as “BP” in the figure) only once. Not only the geometrical
symmetry observed in this panel but also the invisible phases
studied above are associated individually with the pieces of paths.
A frozen Gaussian function is placed on each piece of path (either
before or after branching), which is guided to propagate on the
path. A propagation of the nuclear wavepackets is described by
the blue contour lines in panel a of Figure 13. It is confirmed that
the wavepacket on the second state has successfully reproduced
the nodal structure. (Incidentally, a large deviation of the red (full
quantum) and blue (PSANB) contours is due to the so-called

Figure 13. Semiclassical and quantum dynamics of a wavepacket passing across a conical intersection. (a) Nodal features appearing in the linear
combinations of Gaussian wavepackets guided by two symmetric PSANB paths. The increment of the contour plot for the probability density plot of the
first state is 40 times that of the second one. Red solid and blue dotted lines represent the quantum and PSANBwavepackets, respectively. (b) Trajectory
of symmetric PSANB paths in (x1,x2,t)-space and their one-time branching. “First” and “Second” in the panel indicate paths are running on the first state
and the second states, respectively. “BP” is a branching point set at the exit of the nonadiabatic region.
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late-kick-off property of the path-based based method.118,157 The
front edge of the quantum wavepacket begins to bifurcate earlier
than the part at the central position that is mimicked by path
dynamics.) Thus, it turns out that the branching paths of PSANB
carry the correct phase information; indispensable for the study
of electron dynamics coupled with nuclear motion.
5.4.7. Summary. As far as we can ascertain, this is the first

study on how the non-Born�Oppenheimer branching paths can
correctly accumulate the phases from both nuclear and electronic
dynamics around a conical intersection. It has been shown that
the Longuet�Higgins phase is well reproduced and preserved
using such a nonadiabatic dynamics. The present study is
convincing enough that the nonadiabatic electron wavepacket
dynamics provides a useful tool for the analyses of photochemical
processes in complicated yet realistic systems.

6. CONCLUDING REMARKS

In this review our aim has been to cover the most relevant
recent progress in the study of nonadiabaticity. A special
emphasis is placed on the nonadiabatic electron wavepacket
dynamics in light of some recent technical advances in quantum
chemistry. We hope that the molecular electronic structure
theory will be developed within the realm of electron dynamics
as driven mainly by laser technology, which further demands the
simultaneous development of theoretical analysis, interpretation,
and prediction.

Starting from the very basic Landau�Zener model, we first
reviewed the classic semiclassical theories and proceeded up to
the state-of-art one, such as the Zhu�Nakamura theory. The-
ories of this kind commonly assume the presence of a priori
(mostly one-dimensional) potential energy surfaces and do not
really consider the dynamics of electrons. All these methods have
been thoroughly examined numerically, and it is well-known that
they give accurate nonadiabatic transition amplitudes (or
probabilities) within their validity ranges. It is stressed, on the
other hand, that those validity ranges are not necessarily wide or
even far from reality, depending on the molecular systems under
study. In addition, it is not easy to incorporate the true multi-
dimensional effects of nonadiabaticity into them. The most
critical difficulty encountered, for which, it must be admitted,
these classic theories are not totally responsible, is that they were
developed before the progress of ultrafast laser chemistry. Where
such chemistry is involved, novel nonadiabatic coupling
mediated by the vector potentials, in addition to the native
nonadiabatic transition, must be explicitly taken into account.

The theories of nonadiabatic electron wavepackets can over-
come most of the above difficulties within the level of ab initio
calculations (without assuming specific model potentials), and
thus, section 3 constitutes the heart of this review. However,
there is a price to the fact that the electronic wavepackets are
propagated rather faithfully, namely the treatment of the resul-
tant nuclear paths presents theoretical difficulties: (i) First, it was
not even known whether a non-Born�Oppenheimer global path
did indeed exist: one connecting two end points on two different
adiabatic potential energy surfaces. (ii) Next, how can the
coherence of electronic-state mixing naturally diminish after
the passage across a nonadiabatic region? (iii) Finally, how can
such natural decoherence be compatible with the electron�
nuclear strong entanglement, which is represented by wavepack-
et branching in a full quantum mechanics? We reviewed the
representative theories from this point of view, beginning with

the Pechukas theory to the semiclassical Ehrenfest theory, the
theory of natural decay of mixing, and the theory of path
branching. The present authors are of the opinion that the path
branching representation resolves the above problems both in
principle and in practice. Numerical examples have shown what
the geometry of branching paths looks like and how accurately
the theory performs in estimating the transition amplitude.

It has been stressed that, even without laser fields, the
dynamical electron theory can offer a useful tool to analyze and
conceptualize chemical reactions from the viewpoint of electron
flow in and between molecule(s). The theory is hence expected
to contribute to a wide range of chemical dynamics ranging from
attosecond electron wavepacket dynamics to modern analysis of
the dynamcial foundation of the classic notions in chemistry,
such as the Pauling resonance theory. We also discuss the
interaction of the laser field and the nonadiabatic coupling.
The last numerical example presented illustrated the fact that
the quantum mechanical phase interference due to the Longuet�
Higgins phase around the conical intersection is correctly
reproduced by such branching paths.

Finally, it is hoped that this review will serve as that for a
general theory of dynamics in which quantum and classical
subsystems kinematically contact each other while allowing the
quantummechanical entanglement to survive within the classical
subsystem.

APPENDIX A: QUANTUM CHEMICAL CALCULATIONS
OF THE MATRIX ELEMENTS OF NONADIABATIC
INTERACTIONS

We will now briefly review some of the methods used to
calculate the nonadiabatic coupling elements. As can be easily
surmised, the computational scheme of nonadiabatic coupling
elements depends heavily on the methods of electronic state
calculation, such as configuration interaction, multiconfigura-
tional self-consistent field (MCSCF) method, and so on. Com-
putational efficiency and/or limitations are often determined by
the choice of methods, and hence, the relevant methodological
study is important from a practical point of view and requires
much developmental effort. Since the relevant calculations are
somewhat technical, we describe them here in an Appendix.
Nevertheless, we do want to emphasize that it is possible to catch
a glimpse of the deep aspects of quantum mechanical nonadia-
batic dynamics in such technical details.

A. Diabatic Representation. The nuclear derivative couplings
emerge from a connection matrix for the orthogonal electronic
basis states |ΦIæ, which are generated along a trajectory that is
characterized in terms of an adiabatic parameter vector R.
Suppose that R depends smoothly on time t and the electron
basis set is determined at each point in R-space, namely, R(t).
The wavefunction |Φ(t;R(t))æ can be expanded in terms of this
basis set in the form of

jΦðt;RðtÞÞæ ¼ ∑
I
CIðtÞjΦIðRðtÞÞæ ð162Þ

It should obey the Schr€odinger equation with a system Hamilto-
nian operator, Ĥ(R(t)), which also depends on R(t), as shown
below

ip∂tjΦðt;RðtÞÞæ ¼ ðĤ � ip _RðtÞ∇RÞjΦðt;RðtÞÞæ ð163Þ
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Multiplication of ÆΦI(R(t))| in this equation of motion from the
left side yields

ip _CIðtÞ ¼ ∑
J
ðHIJ � ip _RðtÞ XIJðRðtÞÞÞ CJðtÞ ð164Þ

where

XIJðRðtÞÞ � ÆΦIðRÞj∇RjΦJðRÞæ ð165Þ

is the adiabatic parameter derivative coupling. A dot denotes a
time derivative. This term originated from

ÆΦIðRðtÞÞj∂tjΦJðRðtÞÞæ ð166Þ

Furthermore, the time derivative appears as an element in

ÆΦIðRðtÞÞjΦJðRðt þ ΔtÞÞæ ¼ ÆΦIðRðtÞÞjΦJðRðtÞÞæ
þ ÆΦIðRðtÞÞj∂tjΦJðRðtÞÞæΔt ð167Þ

Indeed the overlap integral on the left-hand-side of this equation
appears as an origin of the nonadiabatic coupling in the path
integral formalism as shown in eq 44. Therefore, a comparison of
these expressions from eq 165 to 167 gives a clear geometrical
meaning in the form of a connectionmatrix between neighboring
electron basis sets in the adiabatic parameter space. Concomi-
tantly, there are two basic ways to evaluate the nonadiabatic
coupling elements, through either eq 165 or 166, and both of
them are outlined below. If we set R(t) to a referential nuclear
classical trajectory point at t, R(t) and XIJ are referred to as the
nuclear derivative coupling matrix elements. In what follows, we
discuss two representations of the electronic states, namely, the
diabatic and adiabatic.
We first consider a formal equation for such a transformation.

(See refs 16 and 234 for an extensive review of the transformation
by Baer.) We start with an adiabatic basis set {ΦI(r;R)}, each
term of which is associated with the eigen-energy EI. If we expand
the total wavefunction in the formΨ(r,R,t) = ∑IΦI(r;R) χI(R,t),
then the Schr€odinger equation becomes

ip
∂

∂t
χI ¼ ∑

j

�p2

2Mj
ð∇ðjÞ þ XðjÞÞ2 þ HelðRÞ

" #
IJ

χJ ð168Þ

The diabatic basis {Fa(r;R)} is such a basis set that eliminates the
derivative coupling (only locally). If we write the transformation
matrix U, such that ∑JΦJUJa = Fa, then the associated nuclear
wavefunctions ζa are related by χJ = ∑aUJaζa. For an X in the
adiabatic representation, a transformationmatrix that satisfies the
equation

∇U þ XU ¼ 0 ð169Þ
makes the nuclear derivative coupling vanish, which is to be
integrated with appropriate boundary conditions. If the dimen-
sion of the nuclear derivative 3 is greater than one, then there is
an integrability condition215

∂Xμ

∂Rν
� ∂Xν

∂Rμ
þ ½Xμ,Xν� ¼ 0 for all μ < ν ð170Þ

The condition eq 170 actually poses a certain limitation on the
existence of the diabatic representation. One of its outcomes is
the inexistence of a perfect diabatic basis in the finite dimensional
expansion. To see this, we denote the projection on the finite

basis set explicitly by � ∑J∈Ω|ΦJæÆΦJ|, where Ω represents
the label set of the basis. The requirement for diabatization
becomes

P f∇U þ XUgP ¼ 0 ð171Þ

and the integrability condition then becomes

P
∂Xμ

∂Rν
� ∂Xν

∂Rμ
þ ½Xμ,Xν�

� 	
P ¼ 0 for all μ < v ð172Þ

Here, the last term on the right hand side of this equation
inevitably involves such terms that cannot be calculated within
the projected space, that is,

P Xμð1�P ÞXνP �P Xνð1�P ÞXμP ð173Þ
Thus, the perfect diabatic representation does not in fact
generally exist unless the basis set is complete.14 Practical
theories of diabatic representation, including those for multi-
dimensional systems, have been studied extensively by
Smith233 and Baer.16,234 Another scheme was proposed using
a different perspective.235,236 In this approximate but practical
treatment, a diabatization is pursued by requiring the basis
states to retain their individual characters smoothly, rather
than minimizing the magnitude of derivative coupling.

B. General Framework of Evaluation of the Nuclear Deriva-
tive Coupling Matrix Elements with Canonical Molecular
Orbitals.There exist both similarities and difference between the
computational schemes for the energy gradient with respect to
the nuclear coordinates237 and the nuclear derivative coupling
elements (NDCs).15,238 The common difficulty lies in the
treatment of the implicit geometry-dependence of the variational
coefficients, such as those of MOs, CSFs, and so on. These coef-
ficients depend only indirectly on the nuclear positions through
the dynamical equations used to determine them. Therefore, in
order to make such dependence explicit, the following methods
are usually taken: (i) The first order expansion of the one- or
multielectron basis set with respect to the slight displacement of
the nuclear positions (giving rise to NDCs) is represented within
the same basis functions of the original position. (ii) Or, the
similar first order expansion is determined by solving dynamical
equations. These in turn are obtained by the derivative of
orthogonal relations, which must be satisfied by the properties
of the basis functions. These equations are generally known as
coupled-perturbed equations.
First, we consider the case of the configuration state function

(CSF) to be used in configuration interactions as the basis
functions. These are an antisymmetrized product of one-electron
orbitals or a symmetry-adapted linear combination of them. The
linear equations, with respect to the infinitesimal nuclear dis-
placement, are derived from the nuclear differentiation of orth-
ogonality relation between the occupied and virtual molecular
orbitals of the Fock operator. This suffices to obtain the nuclear
derivative coupling matrix element in the CSF representation.
The computation of the nonadiabatic coupling elements for
general state-averaging multiconfigurational self-consistent wa-
vefunctions is more involved. In this scheme, the total energy is
defined by the weighted sum of state energies and it is optimized
simultaneously with respect to molecular orbitals and the CSF
coefficients. The nuclear derivatives of the stationary conditions
of this averaged energy with respect to these two sets of coefficients
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yield equations to determine the perturbation coefficients.
Although complicated, these methodologies are indeed necessary
for the compact and accurate representation of nonadiabatic
chemical dynamics.239,240

In the evaluation of the nuclear derivative coupling ele-
ments around a crossing seam, the electronic phase should be
appropriately taken into account. In addition, it should be
noted that NDCs are singular at crossing seams. If we treat
the dynamics of passing across a crossing seam, then the state
coupled dynamics within an adiabatic representation does not
work. Hence, some appropriate diabatic representation is
required. Our experience124,129 suggests that the CSF repre-
sentation is a good and practical alternative to a diabatic
representation, if the molecular orbitals to be utilized are
smoothly connected along a nuclear path (see below). None-
theless, the nuclear-derivative coupling elements are not
exactly zero and the electronic Hamiltonian matrix has large
off-diagonal elements. It is recommended, therefore, that the
nuclear derivative coupling elements XIJ are always taken into
account explicitly. A CSF representation has already been
employed in the study of electron dynamics within the
semiclassical Ehrenfest theory.82,99,100,124,129,151,156

As mentioned above briefly, there is a method that does not
resort to the direct application of the nuclear derivative of
electronic wavefunctions. Instead, an overlap integral between
two electronics states at slightly different times (or nuclear
positions) as in eq 167, which is free of some of difficulties,
such as the singularity at a crossing seam, can be used. The
physical meaning of theses transfer-like integrals between the
states is clear. In addition, this overlap integral does not strongly
depend on how the state function is constructed, either simple CI
or MCSCF. In order to perform such an overlap integral for two
electronic state functions, it is rigorous conditions that all the
basis functions be tied to each other in a one-to-one manner
along a nuclear path. However, in the context of practical
calculations, it is not always easy in practical calculations to make
such a unique correspondence among them.

C. Nuclear Derivative Coupling Elements in the CSF Repre-
sentation. We here concentrate on the CSF representation in
somewhat greater detail. The first order nuclear derivative CSF
coupling elements are expressed in terms of the following
equation

Xk
IJ � ÆΦIj∂kjΦJæ ¼ ∑

i, j
aIJij Æϕij∂kjϕjæ ð174Þ

where aij
IJ = ÆΦI|Êi

†Êj|ΦJæ denotes a one-electron coupling
constant with Êi

† and Êi being the creation and annihilation
operators for the ith molecular orbital ϕi. Orthonormality is
imposed on them as Æϕi|ϕjæ = δij. The electronic spin is omitted
for the sake of simplicity. ∂k denotes a nuclear derivative with
respect to the kth nuclear degree of freedom. It is sufficient to
formulate the first order nuclear derivative coupling matrix
element of the molecular orbital functions as

dkij � Æϕij∂kjϕjæ ð175Þ

Since MO’s {ϕi} are usually prepared as a linear combination
of the atomic orbitals (AO) {χμ} with the coefficients cμ

i as

ϕi ¼ ∑
μ

ciμχμ ð176Þ

the nuclear derivative couplings are written in terms of the AOs
and their associated coefficients as

dkij ¼ ∑
μ
∑
ν
ciμc

j
νS

k
μν þ ∑

μ
∑
ν
ciμ
∂cjν
∂Rk

Sμν ð177Þ

where

Sμν ¼ Æχμjχνæ and Skμν ¼ Æχμj∂kjχνæ ð178Þ
It is convenient for later purposes to antisymmetrize dij

k as

dkij ¼
1
2
ðÆϕij∂kjϕjæ� Æϕjj∂kjϕiæÞ ð179Þ

which naturally arises from the derivative of orthonormalized
molecular orbitals.

a. First Order Derivative of the MO Coefficients
Since the case for the AOs is rather straightforward, here we

are concerned only with the first order derivative over MO
coefficients with respect to the nuclear coordinates. There
are four points to be considered: (i) Implicitly the term {cμ

i }
depends only on {Rk}. (ii)We should formulate their response
to a slight nuclear displacement R using a perturbation theory.
(iii) Consequently, the spaces thus spanned by the perturbed
MO’s are determined by the unperturbed (original) Fock
matrix as the linear combination of the original AO’s. (iv)
It follows then that the derivative of the MO coefficients
{cμ

i } should be determined by the quantities related to a
“derivative” of the Fock matrix. These are the basic ideas
behind the application of the coupled perturbed Hartree�
Fock method to this matter. Their generalization is included in
the literature.241�243

If we represent the nuclear derivative ofMO coefficients in the
form of the following equation

∂kc
i
μ ¼ ∑

MO

m
cmμU

k
mi ð180Þ

where Umi
k are the coefficients to be determined, in particular, we

need to determine Umi
k between cμ

i for occupied MO’s and cμ
m for

unoccupied MO’s. The orthonormality condition gives the
conditions

Uk
ij þ Uk

ji þ Skij ¼ 0 ð181Þ

where

Skij � ∑
AO

μν
ciμc

j
ν

∂Sμν
∂k

¼ ∑
AO

μν
ciμc

j
νðSkRμν þ SkLμνÞ ð182Þ

with Sμν
kR � Æχμ|∂kχνæ and Sμν

kL � Æ∂kχμ|χνæ. By using them, the
derivative couplings are reduced to the form

dkij ¼ ∑
μ
∑
ν
ciμc

j
νS

k
μν þ Uk

ij ð183Þ

b. Using the CPHF Equation To Determine Uij
k

Next the terms Uij
k between the MO’s in both occupied and

unoccupied space are obtained using the coupled perturbed
Hartree�Fock method (CPHF). First, we recall that the Fock
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matrix for the closed-shell system is written as

Fij ¼ hij þ ∑
d:o:

k
f2ðijjkkÞ � ðikjjkÞg ð184Þ

where

hij ¼ Æϕij � 1
2
Δr þ ∑

A

ZA

rA

 !
jϕjæ ð185Þ

with ZA being the nuclear charge of atom A and

ðijjklÞ ¼
Z

dr1 dr2 ϕ
�
i ðr1Þ ϕjðr1Þr�1

12 ϕ
�
kðr2Þ ϕlðr2Þ ð186Þ

For the sake of simplicity, we introduce the following notation

haij � ∑
μν

ciμc
j
νð∂ahμνÞ ð187Þ

ðijjklÞa � ∑
AO

μvδσ

ciμc
j
vc
k
δc

l
σ∂a

Z
dr1dr2x

�
μðr1Þxvðr1Þr�1

12x
�
δðr2Þxσðr2Þ ð188Þ

and

Faij � haij þ ∑
d:o:

k
f2ðijjkkÞa � ðikjjkÞag ð189Þ

Aij, kl � 4ðijjklÞ � ðikjjlÞ � ðiljjkÞ ¼ Akl, ij ¼ Aij, lk ð190Þ
where d.o. in eq 189 means a summation over the doubly
occupied MO space. Finally, with the help of the stationary con-
dition Fij with respect to the displacement of a, namely, ∂Fij/∂a =
0 ( 6¼ Fij

a), we arrive at the following compact form of the equation
for the virtual (virt) and doubly occupied (d.o.) orbital pairs

∑
virt

k
∑
d:o:

l

~Aij, klU
a
kl ¼ Ba0, ij ð191Þ

where (i ∈ virt, j ∈ d.o.) and

~Aij, kl � ðEj � EiÞδikδjl � Aij, kl ð192Þ

Ba0, ij � Faij � SaijEj �
1
2 ∑

d:o

k
∑
d:o:

l
SaklAij, kl ð193Þ

Equation 191 gives {Ukl
a } by inversion, unless ɛj � ɛi = 0.

D. Construction of XIJ
k . Using the properties introduced above,

the nuclear derivative coupling elements forMO space now become

dkij ¼ SkRij þ Uk
ij ð194Þ

with

SkRij � ∑
AO

μν
ciμc

j
νS

kR
μν ð195Þ

which directly yields the CSF derivative coupling elements

Xk
IJ ¼ ∑

MO

ij
aIJij ðUk

ij þ SkRij Þ ð196Þ

However, one problem now arises. The Uij
k terms for the same

occupied or unoccupied MO space are not determined uniquely
from the CPHF equation based on the orthogonality of occupied

and virtual space. However, this problem can be avoided by using
the following approximation. Namely that the symmetric part of
{Uij

k} is a physically meaningful part of a CSF derivative coupling
matrix element, Æϕi|∂k|ϕæ, for the i � j pairs that belong to the
same MO space. This approximation allows the replacement of
�1/2Sij

k withUij
k, and for any inner space rotation pair, (i,j)∈ occ.

or virt. We thus obtain a derivative coupling matrix element for
these MO pairs in such an approximate manner as

Æϕij∂kϕjæ ¼ Uk
ij þ SkRij ≈

1
2
ðUk

ij þ Uk
jiÞ þ SkRij ¼ � 1

2
Skij þ SkRij

¼ � 1
2
ðSkRij þ SkLij Þ þ SkRij ¼ 1

2
ðSkRij � SkLij Þ ð197Þ

in the antisymmetric form. Finally, the nuclear derivative cou-
pling matrix elements for CSF can be written down as

ÆΦIj∂kjΦJæ ¼ ð∑
occ

ij
þ ∑

virt

ij
ÞaIJij dkij þ ∑

occ

i
∑
virt

j
aIJij d

k
ij

þ ∑
virt

i
∑
occ

j
aIJij d

k
ij ð198Þ

¼ ð∑
occ

ij
þ ∑

virt

ij
ÞaIJij

1
2
ðSkRij � SkLij Þ þ ∑

occ

i
∑
virt

j
ðaIJij � aJIij ÞðUk

ij þ SkRij Þ

ð199Þ

E. Nonadiabatic Coupling without the Use of a Nuclear
Derivative. With increasing system size, the implementation of
ab initio electron wavepacket dynamics, such as the semiclassical
Ehrenfest theory, using nuclear derivative coupling tends to be
computationally more demanding because of the necessity of
solving coupled perturbed equations. We therefore propose a
useful treatment of nonadiabatic coupling, in which one can
avoid the tedious coupled perturbed equations for the nuclear
derivative of MO’s and CSF’s.
Let us presume the Schr€odinger equation for an electronic

wavefunction with nonadiabatic state coupling is written as
follows

ip
d
dt
jΦæ ¼ ĤjΦæ S ip _CI ¼ ∑

J
ðHIJ � ipDIJÞCJ ð200Þ

The electronic wavepacket is expanded in terms of CSFs as |Φæ =
∑ICI|ΦIæ. A dot denotes the time derivative. The time-derivative
overlap matrix, which causes state mixing, has the form

DIJ � ÆΦIjΦ_ Jæ ¼ ∑
MO

ij
aIJij Æϕijϕ_ jæ � ∑

MO

ij
aIJij dij ð201Þ

where the MO nuclear derivative coupling matrix element is
defined by

dij � Æϕij
d
dt
jϕjæ ¼

Aij � Aji

2
ð202Þ
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with

AijðtÞ � ÆϕiðtÞjϕ_ jðtÞæ ¼ ∑
AO

μν
½ciμðtÞ _cjνðtÞ SμνðtÞ

þ ciμðtÞ cjνðtÞ _RSRμνðtÞ� ð203Þ

Here the orthogonality of real MO functions is exploited.
Sμν(t) � Æχμ(t)|χν(t)æ and Sμν

R (t) � Æχμ(t)|3R|χν(t)æ are the
atomic orbital (AO) overlap matrix elements and the nuclear
derivative overlap matrix elements, respectively. Thus, we can
avoid the coupled perturbed Hartree�Fock equations or their
analogues to obtain the nuclear derivative over MO coefficients.
Also, the computation of the time derivative is much less time
consuming. However, the price for gaining these advantages is
an efficient and accurate computation of {_cμ

i }. They are
numerically available with the aid of orbital continuity along
the time coordinate in the propagation of the electronic
wavepackets. In this scheme, the derivative coupling matrix
for CSF state vectors does not appear. In a further simplified
implementation of it, one can neglect the force component
originating from the nuclear derivative coupling, that is
assuming that they are generally small.

APPENDIX B: TRACKING THE CONTINUITY OF MO-
LECULAR ORBITALS ALONG A NUCLEAR PATH

In propagating an electronic wavepacket along a path, molec-
ular orbitals are generally used for its expansion as a one-electron
basis. MO’s are, however, generated at each nuclear configura-
tion (geometry) as an eigenfunction of the static one-electron
Hamiltonian, with the Fock operator as an example. Therefore,
no information about time is included at this level. Hence, any
phase factor can be attached on, yet still keeping the constituent
total density matrices invariant. This is because the individual
molecular orbitals are determined independently irrespective of
the neighboring counterparts. Nevertheless, one needs to iden-
tify how the molecular orbitals are actually connected with each
other in terms of their orbital character. Without such a correct
correspondence of the successive molecular orbitals, that is
ϕi(R(t))T ϕi(R(t +Δt)), onemay lose the correct identification
of the CSF ΦI(R(t)) or the total electronic states, which could
result in a wrong time propagation of eq 162. A most serious
situation arises when two or more molecular orbitals are en-
ergetically degenerate. This is exactly the situation where a
nonadiabatic transition is expected to be the most significant.
It is therefore extremely vital to track the unique continuity of the
molecular orbitals in order that the time propagation of the
electronic wavepacket is successful.

One typical example that may appeal to readers and that
emphasizes the seriousness of the matter is as follows: Let us
consider two degenerated π molecular orbitals in a diatomic
molecule, whose bond direction is in the z-coordinate. At each
internuclear distance, a computer program can generate a pair of
π orbitals with an arbitrary orientation in the x,y-plane. That is of
course unless one enforces them to align along, say, the x and y
directions, respectively. Without this special care, the resultant
CSF’s which include themwill become useless as expansion bases
in the practical propagation of an electronic wavepacket as in
eq 162.

A method for obtaining a set of MOs that is proposed as being
appropriate for dynamical simulation was proposed by Truhlar’s

group.236,244 It uses a variational functional to obtain a set of
diabatic MOs as a function of the nuclear geometry. An advan-
tage of this method is that such diabatization is possible without
prior knowledge of the nuclear paths.

A. Concept of Molecular Orbital Unique-Continuity. Let us
now concentrate on this problem with respect to the more
technical aspects. It should be noted that this kind of issue arises
in any quantum dynamics problem, in which a time-dependent
nonorthogonal basis set is used to track the wavepacket dy-
namics. Suppose that we have two sets of molecular orbitals
(MO), {ϕi(t� δt)} and {ϕi(t)}, at slightly different times. Here,
the suffix i runs from 1 to M, which is equal to the number of
atomic orbitals (AOs) employed. t and t + δt are a particular time
and its next neighbor, respectively. It is a usual practice to sort the
ordering of the MOs with respect to the magnitude of their
energies. However, here we need to track their identity smoothly
in terms of their physical character (usually referred to as the
orbital character) but not the energy. The smooth connection
can be achieved by setting the new MOs in such a way as to
maximize an overlap between {ϕi(t� δt)} and {ϕi(t)}. Let the
set of the resulting newMOs be {ϕ~j}, which are represented by
appropriate linear combinations of {ϕi(t)}. If the time step δt
is sufficiently small, we can thus obtain a natural connection
between the two orbital sets. By repeating this method
precisely, a sign-matching between the corresponding molec-
ular orbitals as well as labeling of molecular ordering can be
achieved.
The newMOs as trial functions, {ϕ~j(t)}, are given by the linear

combination of {ϕi(t)} so that the overlap error estimation
function should be minimized. The cost function for the over-
lapping matrix is defined as the square of the difference from the
unit matrix

f ðc__ Þ ¼ jjI__ �~s__jj2 � ∑
M

i, j¼ 1
ðδij �~sijÞ2 ð204Þ

where δij is the Kronecker delta function and the overlap
concerned is defined by

~sij � Æϕiðt � δtÞj~ϕjðtÞæ ð205Þ

with

j~ϕjðtÞæ ¼ ∑
N

k¼ 1
jϕkðtÞæckj ð206Þ

[c__] is the MO mixing matrix to be optimized and [c__]ij = cij has
a mathematical meaning of the contribution of the ith
primitive MO to the jth trial orbital at time t. A bold character
with a double underbar denotes an M � M square matrix. One
can further elaborate the overlap matrix. Nonetheless, we here
employ the present form to focus on the concept of orbital
uniformity (unique-continuity) along a nuclear path.
Next, we introduce the primitive MO overlapping matrix as

oik � Æϕiðt � δtÞjϕkðtÞæ ð207Þ

Substituting this into the cost function above yields

f ð_cÞ � ∑
N

i, j¼ 1
ðδij � ∑

N

k¼ 1
oikckjÞ2 ð208Þ
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The requirement of closest overlap to the unit matrix is written as
∂f
∂cij

¼ 0 ð209Þ
for all i and j. It’s formal solution is given by

c__ ¼ o_�1
_ ð210Þ

Conceptually, this provides the unique continuity of the neigh-
boring molecular orbitals.

B. Practice of Molecular Orbital Unique-Continuity. Suppose
we use the linear combinations of atomic orbitals (LCAO) in
constructing molecular orbitals. We also make the rather opti-
mistic assumption that the time interval δt is so small for AO
overlaps between t� δt and t that it can be approximated safely
by Æχμ(t� δt)|χν(t)æ≈ Æχμ(t)|χν(t)æ. Here, {χμ} is a set of AOs.
This can be employed in evaluating an approximation of the
overlap o__ among the MOs at different times. Since the con-
structed overlap matrix is not exactly unitary, it is preferable to
introduce a natural modification of the MO overlap o__ to achieve
the orthonormality of the resultant transformed orbitals. In fact,
this orthonormality plays a key role, not only in the relevant
mathematical properties but also as working equations for
constructing the gradient properties of electrons. One way to
achieve this orthogonality is to apply the Gramm�Schmidt tech-
nique for the columns of vectors of o__ . This is equivalent to the
unitarization of o__ . We refer this unitary matrix obtained here to
~o__ .Because of the unitarity of~o__ , themixingmatrix c__ is effectively set to

c__ ≈ o_T
_ ð211Þ

whereT on the shoulder of the matrix means taking its transpose.
The proposed scheme is reduced into a form taking linear

combinations within the restricted MO subspace, in which the
molecular orbitals strongly correlate with each other during an
adiabatic change. This is aimed at removing any negligible mixing
to attain numerical stability. In doing so, we merely need to
construct thematrix ~o__ for suchMOs. Practically, we can select them
by checking the diagonal part of ~sij. Our practical procedure
is summarized below:
(1) For extracting MO subspace with a view to strong mixing

among them, we pick up the set of orbital indicesΩ = {k},
which satisfy

1� jÆϕkðt � δtÞjϕkðtÞæj > p ð212Þ
where p is a preset threshold value. Note that the mixing space
can be readily divided into sub-blocks, among which they do not
correlate by examining the off-diagonal elements, |Æϕk(t � δt)|
ϕl(t)æ|.
(2) Next calculate the matrix

oij ¼ Æϕiðt � δtÞjϕjðtÞæ ð213Þ

with i and j being elements of Ω.
(3) Then prepare ~o by making o unitary as explained above.
(4) Next obtain a reconstructed canonical MO set at t, which

is uniformly connected to the set at t � δt,

j~ϕjðtÞæ ¼ ∑
N

k¼ 1
jϕkðtÞæ½~oT �kj ¼ ∑

N

k¼ 1
jϕkðtÞæ~ojk ð214Þ

The orbital energy, ε~i, corresponding to the uniformed orbital,
ϕ~i(t), is set by

ε
~
i ¼ Æ~ϕiðtÞjF̂j~ϕiðtÞæ ¼ ∑

k
εkj~oikj2 ð215Þ

with εk being the canonical orbital energy of ϕk. Here we have
used the unitary property of ~o__ .
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ACRONYMS USED IN THIS REVIEW
ABMD ab initio molecular dynamics
BO Born�Oppenheimer
CI configuration interaction
CIS configuration interaction with single excitations
CPHF coupled perturbed Hartree Fock
CSF configuration state function
LUMO lowest unoccupied molecular orbital
NDC nuclear derivative coupling
PES potential energy surface
PSANB phase space averaging and natural branching
RHF restricted Hartree�Fock
ROHF restricted open-shell Hartree�Fock
SET semiclassical Ehrenfest theory
SOMO singly occupied molecular orbital
SONO singly occupied natural orbital
TDDFT time-dependent density-functional theory
TZV triple ζ valence

VDE vertical detachment energy
WKB Wentzel�Kramers�Brillouin
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